Revista ASCE Magazine, Periodicidad: Trimestral Octubre-Diciembre, Volumen: 4, Número: 4, Año: 2025 páginas 770 - 792

Doi: https://doi.org/10.70577/asce.v4i4.470

Recibido: 2025-09-17

ISSN: 3073-117

Aceptado: 2025-09-29

Publicado: 2025-10-23

Análisis estadístico y espacial de los determinantes del acceso a transferencias no contributivas en Ecuador mediante un modelo Probit

Statistical and Spatial Analysis of the Determinants of Access to Non-Contributory Transfers in Ecuador Using a Probit Model

Autores

Soc. Jorge Alberto Sanango Burbano¹

https://orcid.org/0009-0000-3025-6611 jorge.sanango@upec.edu.ec

Universidad Politécnica Estatal del Carchi

Posgrado, Av. Universitaria y Antisana Tulcán - Ecuador

Eco. Edison Bolívar Reza Paocarina²

https://orcid.org/0000-0002-1276-8127 acoronel13@utmachala.edu.ec

Universidad Politécnica Estatal del Carchi

Posgrado, Av. Universitaria y Antisana Tulcán - Ecuador

Cómo citar

Sanango Burbano, J. A., & Reza Paocarina, E. B. (2025). Análisis estadístico y espacial de los determinantes del acceso a transferencias no contributivas en Ecuador mediante un modelo Probit. *ASCE MAGAZINE*, 4(4), 770–792.

Resumen

ISSN: 3073-117

El presente estudio analiza las desigualdades territoriales y sociodemográficas en la distribución de bonos y pensiones no contributivas en Ecuador, con énfasis en el Bono de Desarrollo Humano. La investigación se sustentó en un diseño cuantitativo, no experimental y transversal, basado en el análisis de registros administrativos del SIIMIES y de datos provenientes de la Encuesta Nacional de Empleo, Desempleo y Subempleo. Se estimó un modelo econométrico Probit, complementado con técnicas geoestadísticas (índice de Moran I y análisis LISA), con el propósito de identificar los factores asociados a la probabilidad de recibir el BDH y los patrones espaciales de concentración de beneficiarios. Los resultados evidencian que el ingreso del hogar tiene un efecto negativo significativo ($\beta = -0.087$; p < 0.001), mientras que ser mujer (AME = 0.0597; p < 0.001) y residir en zona urbana (AME = 0,0269; p < 0,001) incrementan la probabilidad de acceso. El modelo presenta una alta capacidad predictiva (AUC = 0,85) y autocorrelación espacial positiva (Moran I = 0,0376; p = 0,0136), reflejando una distribución territorial no homogénea, con focos de alta concentración en parroquias urbanas de la región Costa y presencia de clústeres High-High y Low-High en el análisis LISA. El estudio concluye que persisten disparidades estructurales que demandan una revisión de los criterios de focalización territorial y sociodemográfica, sugiriendo la integración de herramientas analíticas avanzadas para optimizar la gestión de las políticas de protección social.

Palabras clave: Desigualdad social; Modelos estadísticos; Política Social; Pobreza.

Abstract

ISSN: 3073-117

This study analyzes territorial and sociodemographic inequalities in the distribution of noncontributory bonuses and pensions in Ecuador, with an emphasis on the Human Development Bonus. The research was based on a quantitative, non-experimental, cross-sectional design, based on the analysis of administrative records from SIIMIES and data from the National Survey of Employment, Unemployment, and Underemployment. A Probit econometric model was estimated, complemented by geostatistical techniques (Moran's I index and LISA analysis), with the aim of identifying the factors associated with the probability of receiving the BDH and the spatial patterns of concentration of beneficiaries. The results show that household income has a significant negative effect ($\beta = -0.087$; p < 0.001), while being female (AME = 0.0597; p < 0.001) and living in an urban area (AME = 0.0269; p < 0.001) increase the probability of access. The model has high predictive power (AUC = 0.85) and positive spatial autocorrelation (Moran I = 0.0376; p = 0.0136), reflecting a non-homogeneous territorial distribution, with pockets of high concentration in urban parishes in the coastal region and the presence of High-High and Low-High clusters in the LISA analysis. The study concludes that structural disparities persist, requiring a review of territorial and sociodemographic targeting criteria, suggesting the integration of advanced analytical tools to optimize the management of social protection policies.

Keywords: Social inequality; Statistical models; Social policy; Poverty.

Introducción

ISSN: 3073-117

La protección social hacia sectores vulnerables de la sociedad constituye uno de los pilares principales de las políticas públicas. Su objetivo es garantizar los derechos sociales, reducir la pobreza y mitigar las desigualdades estructurales en Hispanoamérica (Comisión Económica para América Latina y el Caribe (CEPAL, 2020, 2023). En este contexto, los programas de transferencia monetaria no contributiva, como los bonos y las pensiones asistenciales, particularmente en el caso ecuatoriano el Bono de Desarrollo Humano, han logrado protagonismo como mecanismos diseñados por el Estado con el propósito de ofrecer un soporte económico mínimo a los sectores vulnerables y, simultáneamente, para actuar como mecanismos de redistribución orientados a la cohesión social (Alfonzo, 2023; Calvas, 2010).

En Ecuador, el Estado ha destinado en el año 2025 más de 1.100 millones de dólares del presupuesto general a la financiación de estos programas, el Bono de Desarrollo Humano (BDH). Las pensiones no contributivas son las prestaciones de mayor alcance e impacto (Ministerio de Inclusión Económica y Social [MIES], 2025).

Los estudios recientes y las evaluaciones de impacto, establecidas a nivel nacional y regional demuestran la permanencia de persistentes disparidades en la asignación de los beneficios sociales, que evidencian no solo defectos técnicos en la focalización y la expansión de patrones estructurales de desintegración y exclusión social basados en factores sociodemográficos y territoriales (CEPAL, 2020; MIES, 2019, 2025). Las disparidades en la asignación de beneficiarios se manifiestan en una concentración desproporcionada en ciertas áreas geográficas y una cobertura insuficiente en provincias caracterizadas por elevados índices de pobreza y la presencia de sesgos vinculados a variables sociodemográficas tales como edad, sexo, autoidentificación étnica, dichos patrones evidencian desigualdades estructurales que inciden en la equidad en el acceso y la efectividad de los planes, programas y proyectos implementados por el Estado ecuatoriano (Calvas, 2010; CEPAL, 2023).

El Bono Solidario, implementado en Ecuador emergió en la década de los noventa como una estrategia de emergencia frente a la crisis económica y financiera que el país atravesaba (Mideros, 2012). La implementación fue una respuesta coyuntural y sentó las bases para el posterior diseño

CE MAGAZINE ISSN: 3073-117

del Bono de Desarrollo Humano, ejecutado en el año 2003, desde una perspectiva integral que materializó la vinculación entre la asistencia económica directa a la promoción del capital humano mediante la responsabilidad compartida entre diferentes instituciones estatales por ejemplo el Ministerio de Educación y el Ministerio de Salud. (Mideros, 2012; Fiszbein & Schady, 2009). Este avance en política redistributiva, fue el resultado de las recomendaciones de organismos internacionales y las lecciones aprendidas en la asignación de programas similares en otros países del continente americano (Cecchini & Madariaga, 2011; Fiszbein & Schady, 2009).

Dadas estas circunstancias, las transferencias monetarias no contributivas se han considerado como una de las más importantes políticas de asistencia social dirigidas hacia sectores más empobrecidos buscando la mejora continua en sus criterios de focalización y gestión administrativa (MIES, 2025). Sin embargo, y pese a los avances logrados las limitaciones en los sistemas de asignación de beneficiarios aún persisten por ello, es necesario incorporar nuevas aproximaciones metodológicas. La efectividad del programa en términos de equidad y reducción de la desigualdad continúa siendo motivo de debate en la literatura académica y en los informes técnicos de las instituciones del Estado (MIES, 2019, 2025; Ponce & Vos, 2014).

El Registro Social del MIES, instrumento administrativo utilizado con el fin de identificar a la población que acude a los centros de atención a solicitar ayudas sociales ha evidenciado deficiencias derivadas de la desactualización de los datos, la insuficiencia de los indicadores utilizados y la falta de integración de dimensiones clave de la vulnerabilidad, como el aislamiento geográfico, la pertenencia étnica y la situación de discapacidad (CEPAL, 2020; MIES, 2018, 2019). Las limitaciones en la focalización acreditan la necesidad de conformar enfoques econométricos que permitan modelar con precisión y eficiencia los determinantes sociodemográficos y económicos de la recepción de transferencias monetarias de carácter social.

La elección del modelo Probit se fundamenta en tres consideraciones metodológicas, en primer lugar, se asume una distribución normal estándar de los errores, lo que se ajusta a la naturaleza latente y continua del proceso de vulnerabilidad económica que determina la recepción del Bono de Desarrollo Humano (Barrientos, 2010; CEPAL, 2020, 2023; Arenas de Mesa & Robles, 2024). Por otra parte, su enlace normal permite una interpretación consistente de los efectos marginales, expresados como variaciones en la probabilidad de recibir la transferencia, instrumento principal

ASCE MAGAZINE

SCE MAGAZINE ISSN: 3073-117

con el fin de estimar la equidad distributiva en la focalización de transferencia monetarias (Fiszbein

& Schady, 2009; Ponce & Vos, 2014).

Finalmente, el modelo Probit mantiene coherencia con la tradición empírica en la investigación de

política social hispanoamericana, donde se ha consolidado como modelo estándar en el análisis de

programas como el BDH (Calvas, 2010; Mideros, 2012; Alfonzo, 2023; Greene, 2018).

Esto representa una oportunidad para mejorar la precisión y la capacidad predictiva en la

identificación de beneficiarios (MIES, 2025).

Además, el uso de técnicas geoestadísticas complementa este enfoque al proporcionar un análisis

espacial de la asignación de los beneficiarios que facilita la identificación en zonas de

concentración y vacíos de cobertura (MIES, 2025). El análisis territorial es relevante en un país

como Ecuador, marcado por una gran heterogeneidad geográfica y por acentuadas desigualdades

regionales en el acceso a los servicios sociales y en los niveles de bienestar en ciertos estratos de

la población (Calvas, 2010; Alfonzo, 2023).

En este contexto, el presente estudio tiene como objetivo general identificar los determinantes

sociodemográficos y territoriales de la probabilidad de recibir el BDH en Ecuador, integrando

análisis econométrico y exploración espacial.

La hipótesis de investigación plantea que la probabilidad de recibir el BDH se asocia con variables

socioeconómicas, demográficas y geográficas, el cual pone de manifiesto desigualdades

estructurales en la focalización del programa.

Por lo tanto, la investigación aporta al debate sobre la equidad y la efectividad de los programas

asistencialistas en el país, mediante modelos estadísticos robustos que integran el análisis

econométrico, y técnicas geoestadísticas. Esta aproximación ofrece una perspectiva holística y

empíricamente contrastable sobre los elementos estructurales de la desigualdad en la asignación

del Bono de Desarrollo Humano.

Material y Métodos

ISSN: 3073-117

El diseño metodológico empleado en la investigación comprende dos fases el cual comparten un enfoque cuantitativo de tipo no experimental y de corte transversal. La investigación se desarrolló en dos etapas complementarias y enfocado en un mismo periodo de referencia.

En esta etapa se aplicó un modelo econométrico Probit con el fin de estimar los determinantes sociodemográficos y económicos de la probabilidad de recibir el Bono de Desarrollo Humano, sin incorporar efectos espaciales directos. El diseño metodológico se caracteriza por la observación y análisis de datos sin manipulación deliberada de las variables; los fenómenos se observan tal y como se dan en su contexto natural conforme a los lineamientos de la investigación no experimental (Holmes et al., 2024; Rinehart & McGuire, 2017).

En la primera etapa es de carácter geoespacial puesto que tiene como objetivo describir la distribución territorial de la población usuaria de la Unidad de Atención del MIES, especificando sus características territoriales y sociodemográficas (Poirier, 2020).

En una segunda fase, de alcance explicativo-inferencial, se identificaron patrones y correlaciones existentes entre las características de los hogares y la probabilidad de recibir el Bono de Desarrollo Humano sin incidir en los procesos que los origina ni alterar las dinámicas que los generan (Rinehart & McGuire, 2017).

Fuente de datos

La base empírica del estudio proviene de dos fuentes secundarias oficiales reconocidas por su alcance y rigor: el Sistema Integrado de Información del MIES (SIIMIES) y la Encuesta Nacional de Empleo, Desempleo y Subempleo (ENEMDU). La Base de datos administrativa del Ministerio de Inclusión Económica y Social (MIES), específicamente base "Usuarios de la Unidad de Atención del SIIMIES consolidada en marzo 2025, los datos incluyen atributos geoespaciales que permiten su integración en sistemas de información geográfica (SIG), lo que facilita el mapeo de la distribución territorial de los beneficiarios a nivel de provincia y parroquia, y posibilita un análisis más profundo de la realidad estudiada.

ASCE MAGAZINE

SCE MAGAZINE ISSN: 3073-117

La segunda fuente de información es la Encuesta Nacional de Empleo, Desempleo y Subempleo (ENEMDU), correspondiente al mes de marzo del año 2025. La encuesta, ejecutada de manera continua por el Instituto Nacional de Estadística y Censos (INEC) en el país, forma parte del Sistema Integrado de Encuestas de Hogares (SIEH). El ENEMDU representa la principal herramienta estadística oficial para analizar las condiciones laborales, socioeconómicas y demográficas de la población en el país.

Cabe recalcar que no existe integración ni vinculación directa entre las bases de datos, se analizaron de forma independiente pero complementaria.

La población de estudio del SIIMIES estuvo conformada por 11.064 personas usuarias activas de bonos y pensiones no contributivas registradas en el primer trimestre de 2025. La base de datos SIIMIES no responde a un muestreo probabilístico, sino a partir de la demanda institucional y el cumplimiento de criterios técnicos de elegibilidad, definidos bajo parámetros de normativa institucional.

Además, la muestra de la ENEMDU abarcó 27 932 personas, seleccionadas bajo un diseño que asegura un error estándar inferior al 2 % a nivel nacional y entre el 3 % y el 5 % a nivel provincial (INEC, 2025).

Análisis geoestadístico complementario

El análisis se centró en la combinación de métodos geoestadísticos; se realizó un análisis descriptivo de la distribución espacial de usuarios por el MIES, la construcción de mapas coropléticos que permitieron visualizar la intensidad de usuarios atendidos por parroquia y su distribución territorial. De la misma manera, se aplicaron técnicas de autocorrelación espacial global y local: el índice de Moran I (Moran, 1950) se utilizó para evaluar la existencia de patrones generales de concentración de usuarios, mientras que el indicador LISA (Local Indicators of Spatial Association) se aplicó para la identificación de clústeres significativos de alta y baja concentración territorial (Anselin, 1995).

Construcción de variables

La variable dependiente *Yi* toma valor 1 si el individuo recibe el Bono de Desarrollo Humano y 0 en caso contrario.

procedimientos reproducibles en R (versión 2024.12.1).

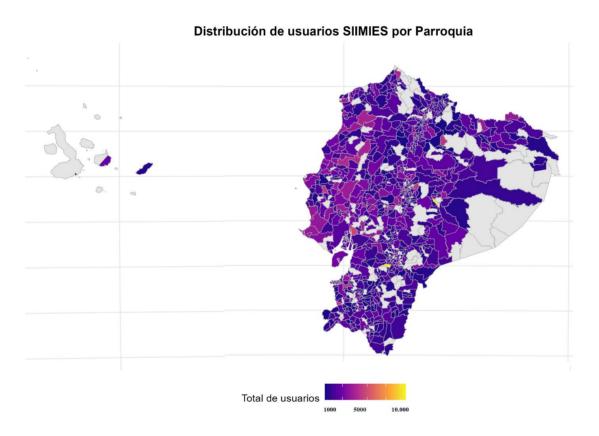
Las variables explicativas incluyeron: ingreso del hogar (logarítmico centrado), sexo, grupo etario (según clasificación INEC), condición laboral, nivel educativo, tipo de hogar, área geográfica (urbano/rural) y zona de planificación (zonal). Se realizó una limpieza y recodificación de variables categóricas, tratamiento de valores faltantes y control de niveles de referencia, siguiendo

ISSN: 3073-117

Modelo econométrico

De igual modo, el modelo Probit se especifica como P (Yi=1)= $\Phi(\beta 0+\beta 1X1i+...+\beta kXki+\epsilon i)$ donde (Φ) es la función de distribución acumulada de la normal estándar y los parámetros β se estiman mediante máxima verosimilitud (Greene, 2018). El modelo Probit es adecuado cuando la variable dependiente es dicotómica, permitiendo explicar la probabilidad condicionada al conjunto de las variables explicativas

El ajuste del modelo se realizó utilizando el paquete glm() del software **R** (R Core Team, 2024), bajo el enlace Probit. Con la finalidad, de respaldar la validez del modelo se verificó la multicolinealidad entre los predictores mediante el factor de inflación de la Varianza (VIF). Además, se evaluó la especificación del enlace mediante el Test (Hosmer et al., 2013), y se calcularon los efectos marginales promedio (AME) con el paquete margins (Leeper, 2020), con el propósito de interpretar la magnitud y dirección del efecto de cada covariable sobre la probabilidad estimada.


La bondad de ajuste se analizó con la prueba de Hosmer–Lemeshow establecida en el paquete ResourceSelection, mientras que la capacidad predictiva fuera de muestra se evaluó a través de la curva ROC y el área bajo la curva (AUC) empleando el paquete pROC (Fawcett, 2006). Estas herramientas permiten estimar el poder discriminante del modelo y su capacidad para clasificar correctamente los casos positivos y negativos (Hosmer et al., 2013; Fawcett, 2006).

Resultados

ISSN: 3073-117

El análisis de la distribución espacial de los usuarios de las unidades de atención del Ministerio de Inclusión Económica y Social, en marzo de 2025, reveló una concentración heterogénea de población atendida. El mapa coroplético generado representó la intensidad de usuarios por parroquia y evidenció que las áreas con mayor número de usuarios se situaron en la región Costa, especialmente en zonas urbanas.

Figura 1 Distribución espacial de los usuarios SIIMIES por parroquia

Nota. La información descrita abarca el mes de marzo 2025.

SCE MAGAZINE ISSN: 3073-117

Tabla 1. Las 30 parroquias con mayor número de usuarios atendidos en marzo 2025 en el Sistema Integrado de Información del MIES (SIIMIES)

Provincia Total Usuarios Parroquia Tarqui 15 847 Guayas Ximena 12 285 Guayas Febres Cordero 7 477 Guavas Eloy Alfaro (Durán) 4 603 Guayas 4 300 Guayas **Pascuales** Santa Elena La Libertad 3 2 2 9 Santa Elena Río Verde 3 044 Manabí Chone 3 022 Esmeraldas Rosa Zárate (Quinindé) 2 604 Manabí El Carmen 2 5 1 7 Guayas Milagro 2 449 Esmeraldas San Lorenzo 2 398 2 3 2 8 Chimborazo Lizarzaburu Manabí Andrés de Vera 2 285 Santa Lucía 2 2 1 7 Guayas Clemente Baquerizo 2 2 0 7 Los Ríos Guayas Balzar 2 169 2 120 Loja Sucre Sucumbios 2 084 Nueva Loja Pichincha Calderón (Carapungo) 2 043 Manabí Pedernales 2 034 Guayas Velasco Ibarra (Cab. El Empalme) 2 032 Santa Elena Manglar Alto 1 962 Abraham Calazacón 1 950 Santo Domingo de los Tsáchilas 1 895 Pastaza Puyo Santa Elena José Luis Tamayo (Muey) 1 889 Santa Elena Santa Elena 1 887 Santa Elena Colonche 1 873 1 851 El Oro Machala Imbabura San Francisco 1 851

Nota. Fuente: Elaboración propia con base en datos del SIIMIES (marzo de 2025).

Autocorrelación espacial global

El análisis de autocorrelación espacial global mediante el índice de Moran I evidenció un valor observado de 0,0376, con una expectativa bajo la hipótesis nula de -0,0010 y una varianza de 0,000306. La desviación estándar del estadístico de prueba fue de 2,21 y el valor asociado p fue 0,0136, el estadístico estandarizado (Z=2,21) evidencian una autocorrelación espacial positiva y estadísticamente significativa (p < 0,05). Los resultados demuestran una distribución espacial del número de usuarios del SIIMIES no es aleatoria, en la que las parroquias con resultados similares tienden a agruparse territorialmente, esto indica la presencia de una dependencia espacial, es decir que el comportamiento de una unidad territorial está influenciado por las condiciones de sus áreas vecinas.

ISSN: 3073-117

Tabla 2. Resultados del análisis de autocorrelación espacial global (Índice de Moran I)

D ()	¥7. 1
Parámetro	Valor
Moran I observado	0,0376
Valor esperado (bajo H ₀)	-0,0010
Varianza	0,000306
Estadístico Z	22,096
P-valor	0,0136
Significancia ($\alpha = 0.05$)	Significativo

Autocorrelación local (LISA) y patrones de asociación

Al aplicar el análisis de autocorrelación espacial local, usando el estadístico LISA, se evidenciaron patrones relevantes. El método geoestadístico aplicado nos permite descomponer la estructura global de dependencia espacial en asociaciones locales distintas. Los resultados demostraron que fueron Alto-Alto (HH), Bajo-Bajo (LL), Alto-Bajo (HL) y Bajo-Alto (LH) por tanto reflejan heterogeneidad espacial del fenómeno a estudio y sugiere desigualdades en cómo se distribuyen los usuarios en el territorio.

Los clústeres Alto-alto (HH) agrupan parroquias con resultados elevados de usuarios del SIIMIES que están rodeados por otras zonas de comportamiento similar; es decir, se generan focos de alta demanda del servicio, mientras que las áreas Bajo-Bajo (LL) se vinculan con otras zonas que tiene limitada cobertura, baja densidad poblacional o menos acceso a los servicios institucionales. En cuanto a los patrones Alto-Bajo (HL) y Bajo-Alto (LH), estos se interpretan una desigualdad entre

SCE MAGAZINE ISSN: 3073-117

los valores de una parroquia y los de su entorno inmediato. Estas configuraciones podrían responder a factores específicos del contexto, como desigualdades en la accesibilidad física a los servicios, diferencias en la capacidad operativa o institucional, o procesos sociodemográficos y migratorios que alteran la homogeneidad espacial del sistema.

Tabla 3.

El análisis local de autocorrelación espacial, a través del indicador de Moran Local (LISA)

Clúster	Número de parroquias		Usuarios promedio	Total de usuarios	
No Significativo		964	432		416 255
High–High		11	1539		16 929
Low-High		17	140		2379
NA (sin cluster)		3	449		1 346

Nota: Los agrupamientos locales significativos con valores bajos o disonantes según el umbral de significancia ($p \le 0.05$). Las unidades "NA (sin cluster)" corresponden a parroquias sin vecinos espaciales definidos. Fuente: Elaboración propia con base en resultados del SIIMIES (2025).

Estructura territorial y visualización de clústeres

La representación cartográfica de los resultados del LISA evidenció una configuración territorial heterogénea. Las zonas rojas (High–High) se concentraron principalmente en sectores con mayor densidad urbana y disponibilidad de servicios, mientras que las zonas verdes (Low–Low) caracterizadas por áreas rurales o periféricas, con menor acceso o presencia institucional.

La existencia de clústeres High-Low y Low-High en áreas de frontera o transición sugiere desigualdades espaciales y posibles brechas en la cobertura del servicio. Estos patrones ponen de manifiesto la influencia del entorno geográfico en la distribución de la población usuaria, reafirmando la necesidad de incorporar la dimensión espacial en la formulación de políticas públicas.

ISSN: 3073-117

Clusters Espaciales LISA (Moran Local) para SHMIES

Figura 2. Clústers Espaciales LISA (Moran Local) para usuarios de SIIMIES.

Nota. En rojo se representan los clústeres High-High, en verde los Low-Low, en gris los No significativos y en negro las unidades sin clúster definido. Fuente: Elaboración propia con base en resultados del SIIMIES (2025).

Análisis del Modelo Probit

Los resultados indican que el nivel de ingreso tiene un efecto negativo y altamente significativo (β =-0.087; p < .001), lo cual implica que, a medida que aumenta el ingreso del hogar, disminuye la probabilidad de recibir el bono, en coherencia con los criterios redistributivos del programa.

El sexo también evidencia un efecto relevante: las mujeres presentan una mayor probabilidad de recibir el bono ($\beta = 0.851$; p < .001), lo que sugiere una política de focalización favorable hacia los hogares encabezados por mujeres

En relación con la edad, el grupo etario de 15 a 24 años muestra una menor probabilidad de recibir el bono en comparación con el grupo de referencia (25-34 años), mientras que en los grupos mayores (45 años o más) también se observa una reducción significativa.

CE MAGAZINE ISSN: 3073-117

Respecto a la condición laboral y educativa, se observa que niveles educativos superiores reducen

significativamente la probabilidad de ser beneficiario (p < .01), mientras que actividades laborales

no declaradas incrementan la probabilidad de elegibilidad.

Por otra parte, residir en área urbana incrementa la probabilidad de recibir el bono ($\beta = 0.377$, p <

.001), lo que puede explicarse por un mejor acceso a los mecanismos de registro y focalización del

programa. Asimismo, se detectaron disparidades regionales las zonas de planificación 5, 7 y 8

presentan coeficientes positivos y significativos (p < .05), evidenciando heterogeneidad regional

en la distribución del beneficio.

Diagnóstico del modelo

Los resultados del diagnóstico de multicolinealidada evidencia que de GVIF ajustado

(GVIF^(1/(2*Df))) son inferiores a 1,2, el cual se descarta problemas de colinealidad entre las

covariables y garantiza la estabilidad y precisión de los estimadores.

La prueba de especificación del enlace (Link Test) determinó que el término ajustado (_hat) fue

significativo, mientras que el término cuadrático (hatsq) no lo fue (p > 0.05), es decir o hay

evidencia de que falten variables relevantes ni que la forma funcional (Probit) sea incorrecta, lo

cual sugiere que el modelo está correctamente especificado y la forma funcional es adecuada.

Efectos marginales promedio (AME)

Los resultados del modelo Probit (Tabla 1 y Figura 1) demuestran los efectos marginales promedio

(AME) sobre la probabilidad de recibir las transferencias monetarias no contributivas. Los

intervalos de confianza se calcularon al 95 %, considerando como significativos los efectos con p

< 0,05.

El ingreso laboral logarítmico tiene un efecto negativo y altamente significativo (AME = -0.0058;

p < 0.001), el cual refleja un incremento en el ingreso reduce en 0.58 puntos porcentuales la

probabilidad de recibir el bono. Este resultado confirma la adecuada focalización del programa

hacia los hogares con menores ingresos.

El sexo femenino presenta un efecto positivo y significativo (AME = 0.0597; p < 0.001); las mujeres tienen, en promedio, una probabilidad 5.97 puntos porcentuales mayor de recibir el bono respecto a los hombres. Este hallazgo concuerda con la evidencia sobre sesgo distributivo favorable

hacia mujeres, frecuente en programas de transferencias condicionadas.

ISSN: 3073-117

El área urbana también ejerce un efecto positivo (AME = 0.0269; p < 0.001), lo que sugiere que los residentes urbanos tienen una mayor probabilidad de acceso al bono, posiblemente por diferencias en cobertura administrativa o facilidad de registro.

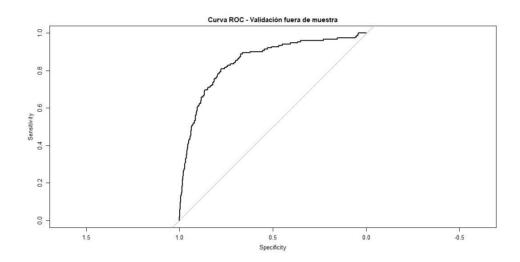
Las categorías etarias no muestran efectos significativos, lo que indica que la edad no constituye un determinante importante una vez controladas las demás variables. Finalmente, la "la variable p062 (afiliación a la seguridad social) exhibe un efecto positivo (AME = 0.0319; p < 0.001), reflejando cierta heterogeneidad dentro de las condiciones socioeconómicas analizadas.

En conjunto, los resultados evidencian que el programa mantiene una orientación redistributiva efectiva, priorizando hogares de bajos ingresos, con mayor probabilidad de cobertura entre mujeres y residentes urbanos, en concordancia con los objetivos de equidad y focalización del diseño del bono.

Tabla 4. Efectos marginales promedio (AME) del modelo Probit

Variable	AME	Error estándar	z	p
Ingreso (log)	-0,0058	0,0009	-6,60	<0,001
Sexo (Mujer)	0,0597	0,0042	14,12	<0,001
Área urbana	0,0269	0,0045	5,98	<0,001
Categoría p062	0,0319	0,0071	4,48	<0,001

Validación fuera de muestra y capacidad predictiva del modelo


La validación empírica del modelo Probit se efectuó a través de una distribución aleatoria del conjunto de datos, utilizando el 70 % de las observaciones para el entrenamiento y el 30 % restante para la validación fuera de muestra. A partir de las probabilidades predichas en el conjunto de

prueba se estimó la curva ROC (Figura 2), la cual permite evaluar la capacidad discriminante del modelo en la clasificación de hogares beneficiarios y no beneficiarios del bono estatal.

El área bajo la curva (AUC) obtenida fue de 0.850, lo que indica una capacidad predictiva excelente según los criterios de Hosmer y Lemeshow (2000), quienes consideran valores de AUC superiores a 0.80 como evidencia de un ajuste robusto y una adecuada separación entre clases es decir el modelo estadístico tiene una probabilidad del 85 % de otorgar una puntuación de probabilidad mayor a un hogar beneficiario que a uno no beneficiario, demostrando una alta precisión en la identificación de los potenciales receptores del bono.

La consistencia del modelo en el conjunto de validación demuestra que la relación entre las variables socioeconómicas que elegimos y la recepción del Bono de Desarrollo Humano funcional bien incluso fuera de la muestra de estimación. Los resultados reflejan un buen desempeño en la validez del modelo para para fines de evaluación y focalización de políticas sociales.

Figura 3. Curva ROC de validación fuera de muestra del modelo Probit.

Nota. La curva ROC (Receiver Operating Characteristic) muestra la capacidad discriminante del modelo para clasificar correctamente a los hogares beneficiarios y no beneficiarios del bono estatal.

Evaluación del ajuste mediante el test de Hosmer-Lemeshow

La validación del modelo Probit se realizó a través del test de Hosmer–Lemeshow, con el propósito de evaluar la correspondencia entre las probabilidades predichas y las frecuencias observadas de

recepción del bono estatal. Los resultados muestran un estadístico de bondad de ajuste de $\chi^2 = 1$ 584,9 con 8 grados de libertad y un valor p < 0,001, lo que indica una diferencia estadísticamente significativa entre lo que el modelo predice y lo que realmente ocurre.

ISSN: 3073-117

Esto nos sugiere, que hay algunas desviaciones en la calibración del modelo, especialmente en los extremos de la distribución de probabilidad, fenómeno frecuente en modelos aplicados a poblaciones heterogéneas y con fuerte estratificación socioeconómica. A pesar de ello, el modelo mantiene un desempeño predictivo adecuado, como lo evidencia el área bajo la curva ROC (AUC = 0,85), lo que refleja una alta capacidad para discriminar entre beneficiarios y no beneficiarios.

En conjunto, el test de Hosmer–Lemeshow confirma que el modelo presenta un ajuste estadísticamente significativo, coherente con la complejidad de la estructura poblacional analizada, manteniendo solidez y validez para entender que factores determinan la elegibilidad al programa estatal.

Discusión

El modelo Probit estimado, demuestra que el ingreso laboral (ingreso_log_c) tiene un coeficiente negativo y significativo (β = -0,0867; p < 0,001), de manera que los hogares con menores ingresos mensuales tienen una mayor probabilidad de recibir el Bono de Desarrollo Humano (BDH), el resultado es consistente con la evidencia regional ya que demuestra una focalización efectiva ya que los programas de transferencias monetarias están correctamente focalizados hacia los hogares de menores recursos (Amarante & Brun, 2018).

El sexo del jefe de hogar tiene un efecto importante: ser mujer aumenta la probabilidad de recibir el Bono de Desarrollo Humano en aproximadamente 5,9 puntos porcentuales (AME = 0,0597). El presente hallazgo deriva de la estrategia del MIES que prioriza la potestad femenina como mecanismo de garantía para el bienestar infantil. El resultado se coincide con las investigaciones a nivel regional donde se evidencia que las transferencias monetarias condicionadas (CCT) tienden a favorecer la participación y control económico de las mujeres en el hogar (Soares & Silva, 2010).

Por otra parte , el efecto del área de residencia presenta una dinámica territorial diferenciada: los hogares urbanos presentan una probabilidad 2,7 puntos porcentuales superior de recibir el bono respecto a los rurales (AME = 0,0269). Este patrón sugiere desequilibrios territoriales en la cobertura del BDH, posiblemente relacionadas con mayores facilidades de registro y monitoreo en entornos urbanos. Además, los coeficientes asociados a las zonas administrativas (Zonal 5, 7 y 8) indican heterogeneidad geográfica, es decir hogares con el mismo nivel de ingreso, edad y composición familiar puede tener diferente probabilidad de recibir el Bono de Desarrollo Humano al encontrarse en zonas distintas esto se debe a la capacidad estatal de implementación y cobertura. Por su parte, la CEPAL (Cecchini & Madariaga, 2011) señala que, pese a la expansión de estas políticas asistencialistas persisten desigualdades territoriales y de acceso en la región, sobre todo en zonas rurales y de difícil cobertura institucional. Este diagnóstico coincide plenamente con la ventaja urbana y las variaciones zonales detectadas en los datos, lo que sugiere que la focalización geográfica del BDH aún requiere mejoras en la focalización de transferencia monetarias.

ISSN: 3073-117

Los hogares donde el jefe de hogar tiene más de 45 años tienen menos probabilidades de recibir el Bono de Desarrollo Humano que los hogares donde el jefe de hogar tiene entre 25 y 34 años. La evidencia sugiere que el programa dirige su cobertura enfocándose más en las familias jóvenes con hijos pequeños lo que evidencia una dimensión etaria en la focalización del BDH. No obstante, este sesgo etario plantea interrogantes sobre la cobertura de adultos mayores en situación de pobreza. No se han encontrado estudios previos sobre el patrón etario por lo que hallazgo expone un aporte original al análisis demográfico del BDH.

En conjunto los resultados demuestran que la política asistencial, logra concentrarse en hogares pobres y en mujeres, no obstante siguen latentes los desequilibrios territoriales que limitan su alcance estructural en esta línea Mideros y Gassmann (2021) evidencian que el Bono de Desarrollo Humano (BDH) ayuda a las familias beneficiarias a mejorar su situación económica y social, sin embargo, los autores advierten que los efectos estructurales de largo plazo siguen siendo inciertos y dependen de factores complementarios como la educación, la acumulación de activos y la composición del hogar. En consecuencia, el programa de transferencias se consolida como una política asistencialista útil para combatir la pobreza, sin embargo, su capacidad transformadora sobre las desigualdades estructurales aún requiere fortalecerse.

Estos resultados confirman que el BDH está correctamente focalizado hacia hogares de baios

ISSN: 3073-117

parcialmente desigualdades espaciales persistentes.

Limitaciones al estudio

El modelo Pobit no incorpora efectos espaciales, pese a la posible autocorrelación geográfica en la

ingresos y mujeres, pero no corrige completamente las brechas territoriales, reproduciendo

distribución del bono. La focalización institucional puede estar influenciada por autoselección o

limitaciones de registro en territorios con menor infraestructura.

Conclusiones

En resumen, los resultados econométricos demuestran que el BDH logra focalizar efectivamente a

los hogares desfavorecidos y a las mujeres, cumpliendo su objetivo distributivo. Sin embargo, la

persistencia de desigualdades territoriales y la heterogeneidad en la planificación zonal evidencian

que el programa no ha alcanzado aún una cobertura equitativa a todo el país. En consecuencia, la

política social ecuatoriana enfrenta el desafío de pasar de una focalización individual-monetaria

hacia una focalización territorial-estructural, capaz de corregir desigualdades históricas entre

provincias. El desempeño del modelo econométrico (AUC ≈ 0,85) con una lectura política y

territorial ofrece una visión más holística del problema de la desigualdad. De manera que el BDH

debe entenderse no solo como un instrumento de alivio a la pobreza, sino como un componente

clave para transformar las estructuras territoriales de exclusión, siempre que se fortalezca su diseño

institucional, enfoque de género y coordinación intersectorial

En este contexto, se recomienda fortalecer la focalización territorial, mediante el uso de

herramientas de análisis espacial y big data, que permitan sobre todo mejorar el criterio de

elegibilidad. Además, se sugiere desde el plano institucional, orientar la política pública hacia una

articulación multisectorial que integre educación, salud y empleo, con el fin de promover

trayectorias sostenibles de la reducción de pobreza.

Referencias Bibliográficas

ISSN: 3073-117

Alfonzo, G. F. (2023). El bono de desarrollo humano y su impacto social en la comuna Juan Montalvo [Tesis de grado]. Universidad Estatal Península de Santa Elena, Ecuador.

Amarante, V., & Brun, M. (2018). Cash transfers in Latin America: Effects on poverty and redistribution. Economía, 19(1), 1–31. https://doi.org/10.1353/eco.2018.0002

Anselin, L. (1995). Local indicators of spatial association — LISA. Geographical Analysis, 27(2), 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x

Arenas de Mesa, A., & Robles, C. (Eds.). (2024). Sistemas de pensiones no contributivos en América Latina y el Caribe: Avanzar en solidaridad con sostenibilidad (Libros de la CEPAL, N.º 164). Comisión Económica para América Latina y el Caribe (CEPAL). https://hdl.handle.net/11362/48945

Barrientos, A. (2010). Social protection and poverty. International Journal of Social Welfare, 19(2), 121–129.

Calvas, G. (2010). Evaluación de impacto del bono de desarrollo humano en la educación [Tesis de Maestría]. FLACSO Ecuador. https://repositorio.flacsoandes.edu.ec/handle/10469/2405

Cecchini, S., & Madariaga, A. (2011). Conditional cash transfer programmes: The recent experience in Latin America and the Caribbean. ECLAC.

Comisión Económica para América Latina y el Caribe (CEPAL). (2020). Los sistemas de protección social en América Latina y el Caribe: Una contribución a la igualdad. CEPAL. https://hdl.handle.net/11362/46443

Comisión Económica para América Latina y el Caribe (CEPAL). (2023a). El impacto de las transferencias monetarias en América Latina: Desafíos y oportunidades. CEPAL.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010

Fiszbein, A., & Schady, N. (2009). Conditional cash transfers: Reducing present and future poverty. The World Bank. https://documents.worldbank.org/curated/en/914561468314130777

Greene, W. H. (2018). Econometric Analysis (8th ed.). Pearson.

Holmes, L., et al. (2024). Cross-sectional study design (non-experimental): A quantitative research approach. American Journal of Medical and Clinical Research & Reviews, 3(5), 1–6. https://doi.org/10.58372/2835-6276.1169

Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied Logistic Regression (3rd ed.). Wiley. https://doi.org/10.1002/9781118548387

ISSN: 3073-117

Instituto Nacional de Estadística y Censos (INEC). (2025). Diseño muestral de la Encuesta Nacional de Empleo, Desempleo y Subempleo (ENEMDU). Dirección de Infraestructura Estadística y Muestreo.

Leeper, T. J. (2020). Margins: An R package for marginal effects. The R Journal, 12(2), 355–368. https://doi.org/10.32614/RJ-2020-014

Mideros, A. (2012). The role of the Bono de Desarrollo Humano in poverty reduction and inequality in Ecuador. ISS Working Paper Series.

Mideros, A., & Gassmann, F. (2021). Fostering social mobility: The case of the Bono de Desarrollo Humano in Ecuador. Journal of Development Effectiveness, 13(4), 385–404. https://doi.org/10.1080/19439342.2021.1986567

Ministerio de Inclusión Económica y Social (MIES). (2018). Metodología para el cálculo de umbrales del Registro Social 2018. Quito: MIES.

Ministerio de Inclusión Económica y Social (MIES). (2019). Estimación de la correspondencia entre el Índice del Registro Socioeconómico de 2018 y el Índice de Condiciones de Vida. Quito: MIES.

Ministerio de Inclusión Económica y Social (MIES). (2025). Informe mensual de gestión de bonos y pensiones. Dirección de Gestión de Información y Datos.

Poirier, M. J. P. (2020). Geographic targeting and normative frames: Revisiting the equity of conditional cash transfer program distribution in Bolivia, Colombia, Ecuador, and Peru. International Journal for Equity in Health, 19(1), 125. https://doi.org/10.1186/s12939-020-01233-0

Ponce, J., & Vos, R. (2014). Redistributive impact and efficiency of Ecuador's Bono de Desarrollo Humano. UNU-WIDER Working Paper.

R Core Team. (2024). R: A language and environment for statistical computing (Version 2024.12.1-563) [Computer software]. R Foundation for Statistical Computing. https://www.r-project.org/

Rinehart, C. S., & McGuire, J. W. (2017). Obstacles to take-up: Ecuador's conditional cash transfer programme, the Bono de Desarrollo Humano. World Development, 97, 165–177. https://doi.org/10.1016/j.worlddev.2017.04.009

ASCE MAGAZINE ISSN: 3073-117

in Latin America: Case studies of Brazil, Chile and Colombia. International Policy Centre for Inclusive Growth Working Paper, No. 61, https://incig.org/publication/26626

Inclusive Growth Working Paper, No. 61. https://ipcig.org/publication/26626

Venables, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S (4th ed.). Springer. https://doi.org/10.1007/978-0-387-21706-2

Soares, F. V., & Silva, E. (2010). Conditional cash transfer programmes and gender vulnerabilities

Conflicto de intereses:

Los autores declaran que no existe conflicto de interés posible.

Financiamiento:

No existió asistencia financiera de partes externas al presente artículo.

Agradecimiento:

N/A

Nota:

El artículo no es producto de una publicación anterior.