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Resumen

Las ecuaciones diferenciales parciales de tipo parabolico e hiperbdlico son esenciales para
modelar procesos de difusion y propagacion, como la transferencia de calor y la dindmica de
ondas, por lo que en aplicaciones reales se recurre a métodos numéricos, entre los cuales las
diferencias finitas destacan por su simplicidad y eficiencia en dominios unidimensionales con
mallado uniforme y fronteras Dirichlet o Neumann. Este trabajo analiza de manera sistematica
la evidencia tedrica y numérica publicada entre 2020 y 2025 sobre estabilidad, orden de
convergencia y costo computacional de esquemas explicitos, implicitos y semimplicitos
aplicados a la ecuacion de calor y, complementariamente, a la ecuacion de onda en 1D. La
revision se ejecuto a través de un andlisis estructurado en bases cientificas de renombre como
es el caso de SCOPUS, Web of Science, ScIELO y Google Académico donde se selecciono
treinta articulos denominados open- access a través de un analisis de estabilidad, estimaciones
de error y pruebas comparativas del ambito numérico. De esta manera, los resultados indican
que los esquemas explicitos clasicos presentan restricciones debido a criterios tipo CFL lo
cual afecta la eficiencia global cuando se requieren mallas finas. Por otro lado, los métodos
implicitos y semimplicitos con especial énfasis Crank—Nicolson, ofrecen mayor convergencia
de segundo orden a través de la ejecucion de procesos algebraicos y un incremento en el costo
por paso temporal. Asimismo, se observa que esquemas compactos de alto orden y variantes
explicitas estabilizadas pueden aportar compromisos competitivos entre precision y eficiencia
bajo condiciones estdndar. La eleccion del esquema debe basarse en un criterio integral que
combine estabilidad practica, precision y costo computacional segin la ecuacion y el régimen

de discretizacion.

Palabras clave: Ecuaciones diferenciales parciales; Diferencias finitas; estabilidad numérica;

convergencia; ecuacion de calor; ecuacion de onda.
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Abstract

Parabolic and hyperbolic partial differential equations are essential for modeling diffusion and
propagation processes, such as heat transfer and wave dynamics. Therefore, numerical methods are
used in real applications, among which finite differences stand out for their simplicity and
efficiency in one-dimensional domains with uniform meshing and Dirichlet or Neumann
boundaries. This work systematically analyzes the theoretical and numerical evidence published
between 2020 and 2025 on stability, order of convergence, and computational cost of explicit,
implicit, and semi-implicit schemes applied to the heat equation and, complementarily, to the 1D
wave equation. The review was carried out through a structured analysis in renowned scientific
databases such as SCOPUS, Web of Science, SciELO, and Google Scholar, where thirty open-
access articles were selected through an analysis of stability, error estimates, and comparative tests
in the numerical field. The results indicate that classical explicit schemes have restrictions due to
CFL-type criteria, which affects overall efficiency when fine meshes are required. On the other
hand, implicit and semi-implicit methods, with special emphasis on Crank—Nicolson, offer greater
second-order convergence through the execution of algebraic processes and an increase in the cost
per time step. Likewise, it is observed that high-order compact schemes and stabilized explicit
variants can provide competitive trade-offs between accuracy and efficiency under standard
conditions. The choice of scheme should be based on a comprehensive criterion that combines
practical stability, accuracy, and computational cost according to the equation and discretization

regime.

Keywords: Partial differential equations; Finite difference methods; Numerical stability;

Convergence; Heat equation; Wave equation.
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Introduccion

Las ecuaciones diferenciales parciales de tipo parabolico e hiperbdlico constituyen una de las
herramientas matematicas fundamentales para la modelacion de fendmenos fisicos asociados a
procesos de difusion, propagacion y transporte, entre los que destacan la transferencia de calor y la
propagacion de ondas en medios continuos, cuya resolucion analitica solo es posible en
configuraciones altamente idealizadas, por lo que en contextos realistas se recurre de manera
sistemdatica a métodos numéricos que permitan aproximar sus soluciones bajo condiciones iniciales
y de frontera diversas, siendo los métodos de diferencias finitas uno de los enfoques mas utilizados
debido a su simplicidad conceptual, facilidad de implementacion y bajo costo computacional
relativo en dominios regulares con mallado uniforme (Sudrez-Carrefio & Rosales-Romero, 2021;

Kovacs et al., 2021).

En virtud de la amplia adopcion de los esquemas de diferencias finitas para la ecuacion de calor en
una dimension espacial, una parte sustancial de la literatura reciente se ha concentrado en el analisis
riguroso de sus propiedades de estabilidad, consistencia y convergencia, dado que la utilidad
préctica de un esquema numérico no depende unicamente de su orden formal de aproximacion,
sino del equilibrio efectivo entre precision, restricciones de estabilidad impuestas por la relacion
entre el paso temporal y espacial, y el costo computacional asociado a su ejecucion, especialmente
cuando se consideran simulaciones de largo tiempo o mallas finas (Nagy et al., 2022; Chen et al.,
2022). En consideracion de un mismo contexto, se analizd de manera sistemdtica esquemas
explicitos como FTCS otros implicitos como es el caso de BTCS y por ultimo métodos
semimplicitos del tipo Crank—Nicolson lo cual deja en evidencia que los esquemas explicitos
presentan restricciones de estabilidad bajo criterios tipo Courant—Friedrichs—Lewy mientras que
los esquemas implicitos ofrecen estabilidad incondicional en la ejecucion de sistemas algebraicos

en cada paso temporal lo que permite incrementar el costo computacional total.

Diversos estudios han demostrado que, para la ecuacion de calor unidimensional con condiciones
de frontera de Dirichlet en mallados uniformes, los esquemas explicitos presentan errores de
truncamiento dependientes de la razon At/Ax?, lo que conduce a una convergencia condicional que
puede degradarse significativamente si no se respetan las restricciones de estabilidad, mientras que

los esquemas implicitos y semimplicitos exhiben mejores propiedades de estabilidad global,
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manteniendo 6rdenes de convergencia de segundo orden en el tiempo y el espacio bajo hipotesis
de regularidad adecuadas de la solucion exacta, tal como se ha verificado tanto analitica como
numéricamente en trabajos recientes que comparan de manera directa estas familias de métodos

(Suérez-Carrefo & Rosales-Romero, 2021; Kovacs et al., 2021; Nagy et al., 2022).

Cabe resaltar que, mas alla de los esquemas clésicos, en los tltimos afios se ha observado un interés
creciente en el desarrollo de variantes explicitas estabilizadas y esquemas no estandar de
diferencias finitas, cuyo objetivo principal es ampliar las regiones de estabilidad sin sacrificar la
simplicidad computacional inherente a los métodos explicitos, lo cual resulta particularmente
relevante en aplicaciones donde la paralelizacion y la eficiencia computacional son factores
determinantes (Kumaria & Mehraa, 2025; Fu et al., 2025). Estos enfoques han permitido construir
esquemas explicitos con estabilidad mejorada e incluso incondicional en ciertos casos,
manteniendo 6rdenes de convergencia comparables a los métodos implicitos tradicionales, lo que
pone de manifiesto que la dicotomia clasica entre estabilidad y costo computacional puede ser

parcialmente superada mediante disefios numéricos adecuados.

En el &mbito de ecuaciones de tipo onda y ecuaciones de segundo orden en el tiempo, los esquemas
tipo Leapfrog y sus extensiones multirrate han sido objeto de un andlisis detallado debido a su
naturaleza explicita, simetria temporal y buenas propiedades de conservacion de energia discreta,
aunque su estabilidad también se encuentra condicionada por restricciones severas sobre el paso
temporal cuando se aplican en mallas no uniformes o en presencia de rigidez inducida por ciertos
modos espaciales (Carle & Hochbruck, 2021; Grote et al., 2025). A manera de respuesta a dichas
limitaciones se propuso la formulacion de propuestas mejoradas las mismas fundamentadas en
ciertas metodologias de estabilizacion polinémica y descomposiciéon de operadores donde las
mismas permiten relajar condiciones de estabilidad donde se evita comprometer con significaria la

precision global del método.

Por aadidura, publicaciones actuales apoyan tematicas donde la evaluacion comparativa numérica
en ecuaciones de calor y onda no debe limitarse al analisis aislado de la estabilidad o del orden de
convergencia por el contrario se la considera como un proceso integrado del costo computacional,

complejidad algoritmica, facilidad de implementacion y robustez frente a cambios o
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actualizaciones en pardametros del mallado y las condiciones de frontera los cuales son aspectos
que adquieren especial relevancia en simulaciones de caracter aplicado (Altybay et al., 2025; Cao

etal., 2025).

Es asi que, la presente revision se plantea bajo el objetivo de analizar de forma sistematica la
evidencia tedrica y numérica reportada entre 2020 y 2025 sobre los métodos de diferencias finitas
aplicados a la ecuacion de calor y de manera complementaria la ecuacion de onda en una dimension
espacial con énfasis en el estudio de la estabilidad, orden de convergencia y costo computacional
bajo condiciones estandar de mallado uniforme y fronteras de tipo Dirichlet y Neumann.
Asimismo, se busca comparar los esquemas explicitos, implicitos y semimplicitos mas utilizados,
asi como algunas variantes estabilizadas recientes, con el fin de identificar qué métodos presentan
un mejor equilibrio entre estabilidad, precision y eficiencia computacional (Suédrez-Carrefio &
Rosales-Romero, 2021; Kovacs et al., 2021; Carle & Hochbruck, 2021; Chen et al., 2022; Grote et
al., 2025; Altybay et al., 2025; Cao et al., 2025; Fu et al., 2025; Nagy et al., 2022; Kumaria &
Mehraa, 2025).

A partir de este analisis, la pregunta de investigacion que guia el presente estudio es: ;qué esquemas
8

numéricos para la ecuacion de calor o de onda presentan el mejor equilibrio entre estabilidad,

precision y costo computacional bajo condiciones estandar, segun la evidencia teorica y las pruebas

numeéricas reportadas en la literatura reciente?
Material y Métodos

Se realiz6 una revision bibliografica de alcance analitico centrada en estabilidad y convergencia de
métodos numéricos para ecuaciones diferenciales parciales, con énfasis en la ecuacion de calor y
la ecuacion de onda en 1D, bajo mallado uniforme y condiciones de frontera tipicas de Dirichlet y
Neumann, la busqueda se orientd a identificar evidencia tedrica y pruebas numéricas sobre
esquemas de diferencias finitas, incluyendo FTCS, BTCS, Crank—Nicolson, Leapfrog y variantes
relacionadas, junto con desarrollos contemporaneos en estabilizacion explicita, operadores SBP—
SAT, esquemas compactos de alto orden y formulaciones IMEX/ADI cuando se reportaban andlisis

de estabilidad, error y convergencia.
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En cuanto al andlisis, identificacion y seleccion de estudios, el mismo se realizd a través del andlisis
de ciertas bases de datos reconocidas como es el caso de SCOPUS, Web of Science, SciELO y
Google Académico donde se empled ciertas cadenas de busqueda con operadores booleanos y
términos equivalentes en inglés y espafiol donde ademas se restringid el periodo de publicacion a
2020-2025 lo cual permitié priorizar las publicaciones de acceso. Adicional a ello, se incluyo
articulos que abordaran dos de tres ejes de interés, estabilidad, convergencia u orden de error y
costo computacional en esquemas numéricos aplicados a PDE de calor, onda o modelos
relacionados que reportaran analisis teorico, experimentos numéricos que se excluyeron trabajos
sin disponibilidad de texto completo documentos tutoriales sin evaluacion comparativa y estudios
no alineados con discretizaciones que no permitieran inferir desempeno bajo configuraciones

estandar.

La seleccion se realizdo en dos fases, cribado por titulo y resumen, seguido de lectura a texto
completo, con extraccion sistematica de informacion sobre tipo de ecuacion, dimension, esquema
temporal y espacial, tratamiento de frontera, pardmetros de mallado At y Ax, métricas de error,
criterios de estabilidad reportados, y medidas de costo computacional cuando existian, cabe resaltar
que la sintesis se organizo conforme a un marco comparativo orientado al equilibrio estabilidad—
precision—costo, y cuando los articulos presentaban resultados en diferentes configuraciones, se
privilegié la comparacion bajo condiciones estdndar, malla uniforme y fronteras Dirichlet o

Neumann, con variacion de At/Ax segln el criterio de estabilidad o el disefio del método.
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Tabla 1.

Cadenas de busqueda por base de datos

Base de Cadena de busqueda Filtros aplicados
datos
SCOPUS TITLE-ABS-KEY(("heat equation” OR "diffusion equation" OR  2020-2025, AsticleReview, inglés o

Web of
Science

SciELO

Google

Académico

"wave equation") AND (" finite difference” OR "finrte-difference" OR.
"FD" OR "Crank-Nicolson" OR "Crank Nicolson" OR "BTCS" OR
"FTCS" OR "Leapfrog" OR "Stormer-Verlet" OR. "Stormer-Verlet"
OR "ADI" OR "IMEX" OR. "SBP" OR "SAT") AND (stability OR.
convergen® OR "error analysis" OR "von Neurmnann"))

TS=(("heat equation” OR. "diffusion equation" OF. "wave equation”)
AND ("finite difference” OR "Crank-Nicolson" OR "BTCS" OR
"FTCS" OR "Leapfrog” OR. "Stémmer-Verlet” OR "ADI" OF. "IMEX"
OR. "summation-by-parts” OR. SBP OR SAT) AND (stability OR
convergen® OR "error estimate®” OR "von Neumann"))

{("ecnacion de calor" OR "ecuacion de difusion” OR "ecuacion de
onda™) AND (“diferencias finitas" OR "Crank-Nicolson" OR
"BTCS" OR "FTCS" OR "Leapfrog") AND (estabilidad OR
convergencia OR error)

("heat equation” OR "wave equation” OR "diffusion equation™)
("finite difference” OR "Crank-Nicolson” OR. BTCS OR FTCS OR
Leapfrog OR "summation-by-parts” OR SBP-SAT) (stability OR
convergence OR. "error analysis"™)

Resultados

espafiol, acceso abierto  cuando
estuviera disporble

20202025,

Article/Review Proceadings Paper,
categorias matematicas‘aphicadas,
1dioma inglés o espafiol

20202025, texto completo,
espafiol porfuguds/inglés

2020-2025, ordenado por relevancia
seleccion manual a texto completo,
preferencia por PDF abierto

Desempeiio de esquemas explicitos e implicitos en la ecuacion de calor

Los estudios analizados en este apartado reportan de manera consistente resultados numéricos y

analiticos que permiten comparar el desempefio de distintos esquemas de diferencias finitas

aplicados a ecuaciones de calor, difusion y onda, bajo configuraciones de mallado uniforme y

condiciones de frontera estandar, evidenciando que la estabilidad, la precision y el costo

computacional dependen de forma sensible tanto del tipo de esquema temporal como de la

discretizacion espacial empleada. En problemas unidimensionales de difusién térmica, los
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esquemas explicitos FTCS y los métodos semimplicitos tipo Crank—Nicolson muestran
comportamientos claramente diferenciados en términos de error y estabilidad, observandose que
FTCS alcanza errores bajos inicamente cuando se satisfacen estrictamente las condiciones CFL,
mientras que Crank—Nicolson mantiene estabilidad y convergencia de segundo orden incluso para
pasos temporales relativamente grandes, a costa de un incremento moderado en el tiempo de
computo asociado a la resolucidon de sistemas lineales en cada paso temporal, resultados que se
repiten de manera sistematica en distintos estudios con configuraciones de frontera de Dirichlet y

Neumann y soluciones exactas conocidas (Mojumder et al., 2023; Haque et al., 2025).

En particular, las pruebas numéricas realizadas para la ecuaciéon de calor en una dimension
muestran que el error en norma L2 y en norma maxima decrece de forma casi cuadratica con el
refinamiento simultdneo de Ax y At en los esquemas implicitos y semimplicitos, mientras que en
los esquemas explicitos la convergencia se ve limitada cuando la razén At/Ax? se aproxima al
umbral de estabilidad, lo que conduce a oscilaciones numéricas o incluso a la divergencia de la
solucion, confirmando de forma empirica los resultados teoricos del analisis de Von Neumann

ampliamente reportados en la literatura reciente (Mojumder et al., 2023; Haque et al., 2025).
Resultados en ecuaciones de onda y esquemas de segundo orden en el tiempo

En el caso de ecuaciones de onda y modelos hiperbolicos, los resultados muestran que los esquemas
explicitos de tipo Leapfrog, Stérmer—Verlet y variantes compactas de alto orden conservan
adecuadamente propiedades energéticas discretas y presentan errores de fase reducidos en
simulaciones de propagacion ondulatoria, siempre que el paso temporal satisfaga la condiciéon CFL
correspondiente. Sin embargo, ante el incremento del paso temporal se aprecia una degradacion
rapida de la solucién numérica lo cual se manifiesta en dispersion artificial y crecimiento de la
energia discreta. A pesar de ello, ciertas formulaciones guiadas en esquemas implicitos o ADI
logran estabilidad incondicional y evolucién temporal a pesar de contar con un costo
computacional mayor debido a la necesidad de resolver sistemas algebraicos acoplados en cada

iteracion temporal (Wu et al., 2022; Cui et al., 2024; Chabassier, 2024).

Los estudios que incorporan amortiguamiento fraccional y formulaciones basadas en energia

discreta confirman que es posible demostrar estabilidad y convergencia uniforme incluso en
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regimenes donde coexisten comportamientos difusivos y ondulatorios, observandose que los
errores numéricos permanecen acotados en simulaciones de largo tiempo, siempre que se respeten

las hipotesis de regularidad de la solucion y se utilicen discretizaciones coherentes en tiempo y

espacio (Cui et al., 2024).
Esquemas compactos de alto orden y eficiencia computacional

Por otra parte, los resultados asociados a esquemas compactos de alto orden indican que es posible
alcanzar 6rdenes de convergencia superiores en el espacio, tipicamente de cuarto o sexto orden,
reduciendo de manera significativa el error global sin necesidad de refinar excesivamente la malla,
lo cual se traduce en una disminucion del costo computacional total para una tolerancia de error
fija. Sin embargo, estos esquemas requieren estencils mas amplios y un tratamiento cuidadoso de
las condiciones de frontera, lo que incrementa la complejidad de implementacion y la sensibilidad
a errores de redondeo, especialmente cuando se consideran coeficientes variables o dominios no

triviales (An & Zhang, 2023; Wu et al., 2022; Zheng et al., 2025).

Asimismo, los resultados numéricos muestran que la ganancia en precision asociada a los esquemas
de alto orden se vuelve particularmente relevante en simulaciones donde el costo de refinamiento
espacial domina el tiempo total de computo, ya que permiten reducir de manera sustancial el
nimero de nodos requeridos para alcanzar un nivel de error comparable al de esquemas clasicos
de segundo orden, efecto que ha sido corroborado mediante comparaciones directas de tiempo de

ejecucion y uso de memoria (Zheng et al., 2025).
Comparacion integral de estabilidad, convergencia y costo computacional

Los estudios comparativos que incorporan operadores de tipo summation-by-parts y variantes
explicitas estabilizadas muestran que la optimizacion de los estencils cerca de las fronteras y el uso
de técnicas de estabilizacion temporal permiten mejorar de forma notable la precision global y la
eficiencia computacional, particularmente en problemas de difusion y reaccion donde los errores
de frontera y la rigidez del sistema influyen de manera decisiva en el comportamiento de la
solucion. Es asi que, se aprecia esquemas explicitos estabilizados como es el caso de Dufort—
Frankel o métodos hopscotch, los cuales compiten de manera favorable con métodos implicitos en

términos de eficiencia computacional bajo ciertos condicionamientos de que se seleccionen
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adecuadamente los parametros del mallado debido a que permiten utilizar pasos temporales
mayores que FTCS sin perder estabilidad donde se mantiene ciertos errores aceptables para
aplicaciones practicas (Stiernstrom et al., 2023; Khayrullaev et al., 2025).

De igual forma, los resultados obtenidos con esquemas Crank—Nicolson extendidos a dominios
dependientes del tiempo indican que es posible mantener estabilidad y convergencia temporal de
segundo orden incluso bajo configuraciones geométricas variables, siempre que se introduzcan
técnicas de extension implicita y estabilizacion adecuadas, aunque con un incremento adicional en
la complejidad algoritmica y en el costo computacional por paso temporal (Frei & Singh, 2023).
De esta manera, los resultados indican la falta de existencia de un esquema Optimo donde se
desarrolle el equilibrio entre estabilidad, precision y costo computacional en dependencia del tipo
de ecuacion, de régimen de mallado y de condiciones de frontera consideradas lo que convierte en
necesario evaluar de manera conjunta las métricas de error, limites de estabilidad y tiempo de
computo para seleccionar el método mas adecuado en cada contexto. En este sentido, los datos
comparativos presentados en la literatura analizada se sintetizan graficamente en la Figura 1, donde
se ilustra la relacion entre el error numérico y el costo computacional para distintos esquemas bajo

configuraciones estandar de discretizacion.
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Figura 2.

Error L2 vs. costo computacional
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En cuanto a la informacion expuesta en la Figura 1, en la misma se aprecia que los esquemas
explicitos cldsicos cuentan con una pendiente muy determinada en cuanto a una relacion error—
costo cuando el paso temporal se aproxima al limite de estabilidad. Dicho andlisis implica pequefias
reducciones requeridas en cuanto a un incremento importante en el tiempo de computo debido a la
necesidad de refinar la malla espacial y temporal. Por otro lado, los esquemas implicitos y
semimplicitos sefialan un ligero avance en cuanto a la relacion planteada debido a la permisividad
de mantener errores bajos con pasos temporales mayores a pesar de que cada iteracion temporal
signifique un mayor costo computacional asociado a la resolucion de sistemas lineales.

De la misma manera, la figura plantea esquemas compactos de alto orden y una metodologia
explicita que se estabiliza en una region intermedia del diagrama la cual fusiona determinados
errores con costos computacionales moderados de manera esencial en simulaciones donde se
prioriza la eficiencia global frente a la simplicidad de implementacion. Dicha situacion determina
las condiciones deficientes de mallado uniforme y fronteras de tipo Dirichlet o Neumann donde
dichos esquemas ofrezcan un compromiso atractivo entre precision y eficiencia en casos de que

disponga una implementacion cuidadosa de operadores espaciales y control adecuado de
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parametros de estabilidad. Por anadidura, el andlisis grafico fundamenta la conclusion de que una
metodologia cuantitativa guiada en un criterio integral la cual considere no solo el orden de

convergencia teorico, sino también la estabilidad practica y el costo computacional efectivo.

Discusion

Los hallazgos reportados en los resultados permiten una interpretacion comparativa mas fina sobre
el equilibrio entre estabilidad, convergencia y costo computacional en esquemas numéricos para
ecuaciones diferenciales parciales, evidenciandose que la superioridad practica de un método no
puede inferirse Unicamente desde su clasificacion como explicito o implicito, sino desde el
mecanismo por el cual el esquema controla, o no controla, el crecimiento de energia discreta, el
acoplamiento entre error temporal y espacial, y la sensibilidad frente a condiciones de frontera,
interfaces o términos rigidos. En virtud de esta lectura, las formulaciones basadas en principios
energéticos y en operadores con propiedad summation-by-parts, combinadas con imposicion débil
de condiciones mediante SAT, constituyen un punto de inflexioén en la discusion de estabilidad
para ecuaciones de onda, porque la derivacion de estimaciones energéticas no solo justifica
estabilidad en sentido L2, sino que delimita de forma explicita qué términos de frontera gobiernan
la robustez del método y como la incorporacion de disipacion numérica puede disearse de manera
estructurada sin recurrir a penalizaciones dependientes del mallado, lo cual adquiere particular
relevancia cuando se consideran fronteras de Dirichlet o condiciones de interfaz en medios
heterogéneos, donde la eleccion de parametros suele ser la principal fuente de fragilidad en
implementaciones de alto orden (Wang et al., 2022). Cabe resaltar que esta perspectiva no se limita
a ecuaciones hiperbolicas, ya que en modelos parabolicos y sistemas isotropicos no lineales, las
estimaciones de error y la estructura del operador temporal también determinan el margen real de
estabilidad y la eficiencia, por lo que la discusion debe mantenerse centrada en la interaccion entre
el operador espacial, el integrador temporal y el tratamiento de la no linealidad.

Por consiguiente, cuando la atencion se traslada a ecuaciones parabolicas y a sistemas acoplados
donde la rigidez se intensifica por términos no lineales, anisotropias o condiciones de frontera
exigentes, la evidencia sugiere que las familias semimplicitas del tipo Crank—Nicolson, asi como
sus variantes ADI, constituyen una solucion metodolégicamente consistente al problema de

equilibrar precision y estabilidad, porque sostienen orden temporal de segundo orden y, al mismo
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tiempo, permiten ampliar el paso temporal sin desencadenar inestabilidades tipicas de esquemas
explicitos, aunque el precio sea un incremento en el costo por paso debido a la resolucion de
sistemas lineales o al particionamiento direccional, aspecto que se vuelve mdas visible en
configuraciones bidimensionales y tridimensionales. En cuanto un contexto similar, los articulos
analizados aportan estimaciones rigurosas del error para esquemas Crank—Nicolson—ADI en
sistemas parabolicos no lineales lo que apoya la mocién de que la eleccion de discretizacion no
debe justificarse por tradicién sino por garantias de precision con control explicito del residuo
cuantitativo lo cual es especialmente pertinente en problemas con capas internas o frentes de
transicion como los modelos de campo de fase (Sfyrakis & Tsoukalas, 2025). De modo
complementario, el anélisis detallado de metodologias implicitas e implicito-explicitas tipo ADER
y DeC, reinterpretadas como esquemas de Runge—Kutta para caracterizar regiones de estabilidad y
posteriormente acopladas con discretizaciones espaciales por diferencias finitas en ecuaciones de
adveccion—difusion, amplia la discusion al mostrar que no basta con declarar un método como A-
estable o de region amplia, sino que es necesario demostrar como esas propiedades se traducen en
restricciones tipo CFL o en cotas simples sobre At al pasar del modelo ODE al caso PDE, cuestion
que incide directamente en el costo total de simulacion y en la coherencia del orden global cuando
se persiguen esquemas de alto orden en tiempo y espacio (Offner et al., 2025).

Aun asi, la discusioén no conduce a una conclusion donde lo implicito sea siempre preferible, debido
a que la eficiencia real en muchas aplicaciones depende de la paralelizacion, del acceso a memoria
y del costo de los solucionadores lineales, por lo que las variantes explicitas estabilizadas y las
formulaciones que incorporan suavizado controlado o reduccién de rango adquieren un papel
estratégico, sobre todo cuando el objetivo es sostener estabilidad practica en escenarios
inherentemente mal condicionados. En este sentido, los esquemas explicitos estabilizados para
marcha hacia atrds en el tiempo en problemas de asimilacion de datos acoplados calor—onda
ejemplifican una idea clave para la discusion, que consiste en aceptar la inestabilidad inherente de
ciertos planteamientos inversos y, en lugar de intentar eliminarla por completo, disefiar operadores
compensatorios de suavizado que atenten el crecimiento explosivo del error, permitiendo
reconstrucciones Utiles en intervalos temporales no triviales, lo que abre una linea interpretativa
sobre como la estabilidad numérica puede concebirse como propiedad disefiable incluso en

formulaciones esencialmente mal planteadas (Carasso, 2025).
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La literatura analizada muestra que el tratamiento de la frontera y la gestion de dominios no
acotados o con capas limite puede dominar el error global incluso cuando el nucleo del esquema
es de alto orden, por lo que una parte sustancial de la discusién debe centrarse en métodos que
atacan directamente ese cuello de botella. En modelos de conduccion de calor con efectos de fase
dual y dominios semi-infinitos, el uso de condiciones de frontera artificiales de alto orden
transformadas desde formulaciones en dominio no acotado, acompafiado de analisis de estabilidad
en norma L2 y de pruebas numéricas, permite sostener estabilidad incondicional y convergencia
de segundo orden en tiempo y espacio para el problema reducido, lo que refuerza que la estabilidad
no depende solo del integrador temporal, sino de la fidelidad con la que se representa el
comportamiento asintdtico en el borde computacional (Bu et al., 2025). En escenarios de singular
perturbacion y ecuaciones parabdlicas con retardo, la evidencia indica que la convergencia
uniforme, entendida como estabilidad y control del error independientemente de parametros
pequefios, requiere estrategias especificas como factores de ajuste y aproximaciones tipo spline
para evitar oscilaciones en capas limite, mostrando que en mallas uniformes el disefio de
operadores “fitted” puede ser mas determinante que elevar el orden formal del esquema, por lo que
la discusion de precision debe mantenerse vinculada a la estructura multiescala del problema
(Hassen & Duressa, 2025). Desde una consideracion metodologica, los resultados presentados
impulsan la importancia de trabajos de ecuaciones fraccionarias difusion—onda donde la estabilidad
y la convergencia se evaluan a través de métodos de energia los cuales discreta mediante hipotesis
por el cual se destaca la linealizacion controlada y el uso de discretizaciones tipo Crank—Nicolson
con formulas desplazadas con la finalidad de obtener derivadas fraccionarias las cuales permiten
sostener convergencia demostrable y flexibilidad para términos no lineales (Elmahdi & Huang,
2021).

Finalmente, cuando se considera la necesidad de alta precision sin incrementar de manera
prohibitiva el costo, emergen enfoques que, aunque no sean diferencias finitas clasicas en el sentido
estricto, aportan a la discusion sobre el balance buscado en esta revision, debido a que desplazan
la frontera de lo que se entiende por eficiencia bajo condiciones estandar. Las técnicas de colacion
con polinomios de alto grado para ecuaciones de conduccion de calor con condiciones de Dirichlet
muestran estabilidad incondicional mediante analisis de Von Neumann y reportan comparaciones

tabulares con soluciones analiticas, lo que sugiere que, para ciertas configuraciones 1D, elevar el
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orden del aproximante espacial puede entregar precision elevada con implementaciones
relativamente directas, siempre que se mantenga control sobre el esquema temporal y la estructura
de los puntos de colacion (Kutluay et al., 2025). De forma complementaria, los esquemas
conservativos tipo Crank—Nicolson para ecuaciones dispersivas como KdV aportan un argumento
central para la discusion, que consiste en que la conservacion discreta en norma L2 y el
aprovechamiento de efectos de suavizado locales pueden ser tan importantes como el orden formal,
especialmente cuando se pretende converger a soluciones débiles desde datos iniciales no suaves,
aspecto que amplia el alcance interpretativo de la revision hacia ecuaciones donde la estabilidad se
expresa como conservacion y donde la precision se evaltia también por la fidelidad de invariantes,

no solo por normas de error cldsicas (Dwivedi & Sarkar, 2023).

Conclusiones

La presente revision bibliografica permite concluir que el andlisis de estabilidad y convergencia en
métodos numeéricos de diferencias finitas para ecuaciones de calor y onda debe abordarse desde
una perspectiva integral, en la cual el orden de convergencia formal, la estabilidad practica y el
costo computacional efectivo se evaliien de manera conjunta y no como propiedades aisladas. La
evidencia teodrica y numérica analizada confirma que los esquemas explicitos clasicos, si bien
resultan atractivos por su simplicidad y bajo costo por iteracion, se encuentran fuertemente
limitados por restricciones de estabilidad tipo Courant—Friedrichs—Lewy, lo que reduce su
eficiencia global cuando se requieren mallas finas o simulaciones de largo tiempo.

Por el contrario, la metodologia implicita y semimplicita sefialan un desempefio robusto bajo
condiciones estdndar de mallado uniforme y fronteras Dirichlet o Neumann lo cual mantiene cierto
grado de convergencia de segundo orden y estabilidad mejorada frente a incrementos del paso
temporal a pesar de un mayor costo computacional asociado a la resolucion de sistemas
algebraicos. De la misma manera, la revision evidencia que los esquemas explicitos estabilizados
y la metodologia de alto orden representan alternativas relevantes debido a que permiten reducir el
error global o ampliar las regiones de estabilidad sin un incremento proporcional del costo

computacional total.
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Es asi que, los resultados analizados sefialan la no existencia de sistema cuantitativo universal que
sea superior o apto a todas las configuraciones relacionadas al equilibrio entre estabilidad, precision
y costo computacional. De igual manera, la principal contribucion de dicha revision radica en
proporcionar un marco comparativo que facilite la seleccion informada de diferencias finitas en

aplicaciones cientificas e ingenieriles, asi como tremas relacionados a la misma.
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