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Resumen 
 

Las ecuaciones diferenciales parciales de tipo parabólico e hiperbólico son esenciales para 

modelar procesos de difusión y propagación, como la transferencia de calor y la dinámica de 

ondas, por lo que en aplicaciones reales se recurre a métodos numéricos, entre los cuales las 

diferencias finitas destacan por su simplicidad y eficiencia en dominios unidimensionales con 

mallado uniforme y fronteras Dirichlet o Neumann. Este trabajo analiza de manera sistemática 

la evidencia teórica y numérica publicada entre 2020 y 2025 sobre estabilidad, orden de 

convergencia y costo computacional de esquemas explícitos, implícitos y semimplícitos 

aplicados a la ecuación de calor y, complementariamente, a la ecuación de onda en 1D. La 

revisión se ejecutó a través de un análisis estructurado en bases científicas de renombre como 

es el caso de SCOPUS, Web of Science, SciELO y Google Académico donde se seleccionó 

treinta artículos denominados open- access  a través de un análisis de estabilidad, estimaciones 

de error y pruebas comparativas del ámbito numérico. De esta manera, los resultados indican 

que los esquemas explícitos clásicos presentan restricciones debido a criterios tipo CFL lo 

cual afecta la eficiencia global cuando se requieren mallas finas. Por otro lado, los métodos 

implícitos y semimplícitos con especial énfasis Crank–Nicolson, ofrecen mayor convergencia 

de segundo orden a través de la ejecución de procesos algebraicos y un incremento en el costo 

por paso temporal. Asimismo, se observa que esquemas compactos de alto orden y variantes 

explícitas estabilizadas pueden aportar compromisos competitivos entre precisión y eficiencia 

bajo condiciones estándar. La elección del esquema debe basarse en un criterio integral que 

combine estabilidad práctica, precisión y costo computacional según la ecuación y el régimen 

de discretización.  

Palabras clave: Ecuaciones diferenciales parciales; Diferencias finitas; estabilidad numérica; 

convergencia; ecuación de calor; ecuación de onda. 
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Abstract 
  

Parabolic and hyperbolic partial differential equations are essential for modeling diffusion and 

propagation processes, such as heat transfer and wave dynamics. Therefore, numerical methods are 

used in real applications, among which finite differences stand out for their simplicity and 

efficiency in one-dimensional domains with uniform meshing and Dirichlet or Neumann 

boundaries. This work systematically analyzes the theoretical and numerical evidence published 

between 2020 and 2025 on stability, order of convergence, and computational cost of explicit, 

implicit, and semi-implicit schemes applied to the heat equation and, complementarily, to the 1D 

wave equation. The review was carried out through a structured analysis in renowned scientific 

databases such as SCOPUS, Web of Science, SciELO, and Google Scholar, where thirty open-

access articles were selected through an analysis of stability, error estimates, and comparative tests 

in the numerical field. The results indicate that classical explicit schemes have restrictions due to 

CFL-type criteria, which affects overall efficiency when fine meshes are required. On the other 

hand, implicit and semi-implicit methods, with special emphasis on Crank–Nicolson, offer greater 

second-order convergence through the execution of algebraic processes and an increase in the cost 

per time step. Likewise, it is observed that high-order compact schemes and stabilized explicit 

variants can provide competitive trade-offs between accuracy and efficiency under standard 

conditions. The choice of scheme should be based on a comprehensive criterion that combines 

practical stability, accuracy, and computational cost according to the equation and discretization 

regime.  

Keywords: Partial differential equations; Finite difference methods; Numerical stability; 

Convergence; Heat equation; Wave equation. 
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Introducción 

Las ecuaciones diferenciales parciales de tipo parabólico e hiperbólico constituyen una de las 

herramientas matemáticas fundamentales para la modelación de fenómenos físicos asociados a 

procesos de difusión, propagación y transporte, entre los que destacan la transferencia de calor y la 

propagación de ondas en medios continuos, cuya resolución analítica solo es posible en 

configuraciones altamente idealizadas, por lo que en contextos realistas se recurre de manera 

sistemática a métodos numéricos que permitan aproximar sus soluciones bajo condiciones iniciales 

y de frontera diversas, siendo los métodos de diferencias finitas uno de los enfoques más utilizados 

debido a su simplicidad conceptual, facilidad de implementación y bajo costo computacional 

relativo en dominios regulares con mallado uniforme (Suárez-Carreño & Rosales-Romero, 2021; 

Kovács et al., 2021). 

En virtud de la amplia adopción de los esquemas de diferencias finitas para la ecuación de calor en 

una dimensión espacial, una parte sustancial de la literatura reciente se ha concentrado en el análisis 

riguroso de sus propiedades de estabilidad, consistencia y convergencia, dado que la utilidad 

práctica de un esquema numérico no depende únicamente de su orden formal de aproximación, 

sino del equilibrio efectivo entre precisión, restricciones de estabilidad impuestas por la relación 

entre el paso temporal y espacial, y el costo computacional asociado a su ejecución, especialmente 

cuando se consideran simulaciones de largo tiempo o mallas finas (Nagy et al., 2022; Chen et al., 

2022). En consideración de un mismo contexto, se analizó de manera sistemática esquemas 

explícitos como FTCS otros implícitos como es el caso de BTCS y por último métodos 

semimplícitos del tipo Crank–Nicolson lo cual deja en evidencia que los esquemas explícitos 

presentan restricciones de estabilidad bajo criterios tipo Courant–Friedrichs–Lewy mientras que 

los esquemas implícitos ofrecen estabilidad incondicional en la ejecución de sistemas algebraicos 

en cada paso temporal lo que permite incrementar el costo computacional total. 

Diversos estudios han demostrado que, para la ecuación de calor unidimensional con condiciones 

de frontera de Dirichlet en mallados uniformes, los esquemas explícitos presentan errores de 

truncamiento dependientes de la razón Δt/Δx², lo que conduce a una convergencia condicional que 

puede degradarse significativamente si no se respetan las restricciones de estabilidad, mientras que 

los esquemas implícitos y semimplícitos exhiben mejores propiedades de estabilidad global, 
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manteniendo órdenes de convergencia de segundo orden en el tiempo y el espacio bajo hipótesis 

de regularidad adecuadas de la solución exacta, tal como se ha verificado tanto analítica como 

numéricamente en trabajos recientes que comparan de manera directa estas familias de métodos 

(Suárez-Carreño & Rosales-Romero, 2021; Kovács et al., 2021; Nagy et al., 2022). 

Cabe resaltar que, más allá de los esquemas clásicos, en los últimos años se ha observado un interés 

creciente en el desarrollo de variantes explícitas estabilizadas y esquemas no estándar de 

diferencias finitas, cuyo objetivo principal es ampliar las regiones de estabilidad sin sacrificar la 

simplicidad computacional inherente a los métodos explícitos, lo cual resulta particularmente 

relevante en aplicaciones donde la paralelización y la eficiencia computacional son factores 

determinantes (Kumaria & Mehraa, 2025; Fu et al., 2025). Estos enfoques han permitido construir 

esquemas explícitos con estabilidad mejorada e incluso incondicional en ciertos casos, 

manteniendo órdenes de convergencia comparables a los métodos implícitos tradicionales, lo que 

pone de manifiesto que la dicotomía clásica entre estabilidad y costo computacional puede ser 

parcialmente superada mediante diseños numéricos adecuados. 

En el ámbito de ecuaciones de tipo onda y ecuaciones de segundo orden en el tiempo, los esquemas 

tipo Leapfrog y sus extensiones multirrate han sido objeto de un análisis detallado debido a su 

naturaleza explícita, simetría temporal y buenas propiedades de conservación de energía discreta, 

aunque su estabilidad también se encuentra condicionada por restricciones severas sobre el paso 

temporal cuando se aplican en mallas no uniformes o en presencia de rigidez inducida por ciertos 

modos espaciales (Carle & Hochbruck, 2021; Grote et al., 2025). A manera de respuesta a dichas 

limitaciones se propuso la formulación de propuestas mejoradas las mismas fundamentadas en 

ciertas metodologías de estabilización polinómica y descomposición de operadores donde las 

mismas permiten relajar condiciones de estabilidad donde se evita comprometer con significaría la 

precisión global del método. 

Por añadidura, publicaciones actuales apoyan temáticas donde la evaluación comparativa numérica 

en ecuaciones de calor y onda no debe limitarse al análisis aislado de la estabilidad o del orden de 

convergencia por el contrario se la considera como un proceso integrado  del costo computacional,  

complejidad algorítmica, facilidad de implementación y robustez frente a cambios o 
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actualizaciones en parámetros del mallado y las condiciones de frontera los cuales son aspectos 

que adquieren especial relevancia en simulaciones de carácter aplicado (Altybay et al., 2025; Cao 

et al., 2025). 

Es así que, la presente revisión se plantea bajo el objetivo de analizar de forma sistemática la 

evidencia teórica y numérica reportada entre 2020 y 2025 sobre los métodos de diferencias finitas 

aplicados a la ecuación de calor y de manera complementaria la ecuación de onda en una dimensión 

espacial con énfasis en el estudio de la estabilidad, orden de convergencia y costo computacional 

bajo condiciones estándar de mallado uniforme y fronteras de tipo Dirichlet y Neumann. 

Asimismo, se busca comparar los esquemas explícitos, implícitos y semimplícitos más utilizados, 

así como algunas variantes estabilizadas recientes, con el fin de identificar qué métodos presentan 

un mejor equilibrio entre estabilidad, precisión y eficiencia computacional (Suárez-Carreño & 

Rosales-Romero, 2021; Kovács et al., 2021; Carle & Hochbruck, 2021; Chen et al., 2022; Grote et 

al., 2025; Altybay et al., 2025; Cao et al., 2025; Fu et al., 2025; Nagy et al., 2022; Kumaria & 

Mehraa, 2025). 

A partir de este análisis, la pregunta de investigación que guía el presente estudio es: ¿qué esquemas 

numéricos para la ecuación de calor o de onda presentan el mejor equilibrio entre estabilidad, 

precisión y costo computacional bajo condiciones estándar, según la evidencia teórica y las pruebas 

numéricas reportadas en la literatura reciente? 

Material y Métodos 

Se realizó una revisión bibliográfica de alcance analítico centrada en estabilidad y convergencia de 

métodos numéricos para ecuaciones diferenciales parciales, con énfasis en la ecuación de calor y 

la ecuación de onda en 1D, bajo mallado uniforme y condiciones de frontera típicas de Dirichlet y 

Neumann, la búsqueda se orientó a identificar evidencia teórica y pruebas numéricas sobre 

esquemas de diferencias finitas, incluyendo FTCS, BTCS, Crank–Nicolson, Leapfrog y variantes 

relacionadas, junto con desarrollos contemporáneos en estabilización explícita, operadores SBP–

SAT, esquemas compactos de alto orden y formulaciones IMEX/ADI cuando se reportaban análisis 

de estabilidad, error y convergencia. 
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En cuanto al análisis, identificación y selección de estudios, el mismo se realizó a través del análisis 

de ciertas bases de datos reconocidas como es el caso de SCOPUS, Web of Science, SciELO y 

Google Académico donde se empleó ciertas cadenas de búsqueda con operadores booleanos y 

términos equivalentes en inglés y español donde además se restringió el periodo de publicación a 

2020–2025 lo cual permitió priorizar las publicaciones de acceso. Adicional a ello, se incluyó 

artículos que abordaran dos de tres ejes de interés, estabilidad, convergencia u orden de error y 

costo computacional en esquemas numéricos aplicados a PDE de calor, onda o modelos 

relacionados que reportaran análisis teórico, experimentos numéricos que se excluyeron trabajos 

sin disponibilidad de texto completo documentos tutoriales sin evaluación comparativa y estudios 

no alineados con discretizaciones que no permitieran inferir desempeño bajo configuraciones 

estándar. 

La selección se realizó en dos fases, cribado por título y resumen, seguido de lectura a texto 

completo, con extracción sistemática de información sobre tipo de ecuación, dimensión, esquema 

temporal y espacial, tratamiento de frontera, parámetros de mallado Δt y Δx, métricas de error, 

criterios de estabilidad reportados, y medidas de costo computacional cuando existían, cabe resaltar 

que la síntesis se organizó conforme a un marco comparativo orientado al equilibrio estabilidad–

precisión–costo, y cuando los artículos presentaban resultados en diferentes configuraciones, se 

privilegió la comparación bajo condiciones estándar, malla uniforme y fronteras Dirichlet o 

Neumann, con variación de Δt/Δx según el criterio de estabilidad o el diseño del método. 
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Tabla 1.   

Cadenas de búsqueda por base de datos 

 

 

Resultados 

Desempeño de esquemas explícitos e implícitos en la ecuación de calor 

Los estudios analizados en este apartado reportan de manera consistente resultados numéricos y 

analíticos que permiten comparar el desempeño de distintos esquemas de diferencias finitas 

aplicados a ecuaciones de calor, difusión y onda, bajo configuraciones de mallado uniforme y 

condiciones de frontera estándar, evidenciando que la estabilidad, la precisión y el costo 

computacional dependen de forma sensible tanto del tipo de esquema temporal como de la 

discretización espacial empleada. En problemas unidimensionales de difusión térmica, los 
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esquemas explícitos FTCS y los métodos semimplícitos tipo Crank–Nicolson muestran 

comportamientos claramente diferenciados en términos de error y estabilidad, observándose que 

FTCS alcanza errores bajos únicamente cuando se satisfacen estrictamente las condiciones CFL, 

mientras que Crank–Nicolson mantiene estabilidad y convergencia de segundo orden incluso para 

pasos temporales relativamente grandes, a costa de un incremento moderado en el tiempo de 

cómputo asociado a la resolución de sistemas lineales en cada paso temporal, resultados que se 

repiten de manera sistemática en distintos estudios con configuraciones de frontera de Dirichlet y 

Neumann y soluciones exactas conocidas (Mojumder et al., 2023; Haque et al., 2025). 

En particular, las pruebas numéricas realizadas para la ecuación de calor en una dimensión 

muestran que el error en norma L2 y en norma máxima decrece de forma casi cuadrática con el 

refinamiento simultáneo de Δx y Δt en los esquemas implícitos y semimplícitos, mientras que en 

los esquemas explícitos la convergencia se ve limitada cuando la razón Δt/Δx² se aproxima al 

umbral de estabilidad, lo que conduce a oscilaciones numéricas o incluso a la divergencia de la 

solución, confirmando de forma empírica los resultados teóricos del análisis de Von Neumann 

ampliamente reportados en la literatura reciente (Mojumder et al., 2023; Haque et al., 2025). 

Resultados en ecuaciones de onda y esquemas de segundo orden en el tiempo 

En el caso de ecuaciones de onda y modelos hiperbólicos, los resultados muestran que los esquemas 

explícitos de tipo Leapfrog, Störmer–Verlet y variantes compactas de alto orden conservan 

adecuadamente propiedades energéticas discretas y presentan errores de fase reducidos en 

simulaciones de propagación ondulatoria, siempre que el paso temporal satisfaga la condición CFL 

correspondiente. Sin embargo, ante el incremento del paso temporal se aprecia una degradación 

rápida de la solución numérica lo cual se manifiesta en dispersión artificial y crecimiento de la 

energía discreta. A pesar de ello, ciertas formulaciones guiadas en esquemas implícitos o ADI 

logran estabilidad incondicional y evolución temporal a pesar de contar con un costo 

computacional mayor debido a la necesidad de resolver sistemas algebraicos acoplados en cada 

iteración temporal (Wu et al., 2022; Cui et al., 2024; Chabassier, 2024). 

Los estudios que incorporan amortiguamiento fraccional y formulaciones basadas en energía 

discreta confirman que es posible demostrar estabilidad y convergencia uniforme incluso en 
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regímenes donde coexisten comportamientos difusivos y ondulatorios, observándose que los 

errores numéricos permanecen acotados en simulaciones de largo tiempo, siempre que se respeten 

las hipótesis de regularidad de la solución y se utilicen discretizaciones coherentes en tiempo y 

espacio (Cui et al., 2024). 

Esquemas compactos de alto orden y eficiencia computacional 

Por otra parte, los resultados asociados a esquemas compactos de alto orden indican que es posible 

alcanzar órdenes de convergencia superiores en el espacio, típicamente de cuarto o sexto orden, 

reduciendo de manera significativa el error global sin necesidad de refinar excesivamente la malla, 

lo cual se traduce en una disminución del costo computacional total para una tolerancia de error 

fija. Sin embargo, estos esquemas requieren estencils más amplios y un tratamiento cuidadoso de 

las condiciones de frontera, lo que incrementa la complejidad de implementación y la sensibilidad 

a errores de redondeo, especialmente cuando se consideran coeficientes variables o dominios no 

triviales (An & Zhang, 2023; Wu et al., 2022; Zheng et al., 2025). 

Asimismo, los resultados numéricos muestran que la ganancia en precisión asociada a los esquemas 

de alto orden se vuelve particularmente relevante en simulaciones donde el costo de refinamiento 

espacial domina el tiempo total de cómputo, ya que permiten reducir de manera sustancial el 

número de nodos requeridos para alcanzar un nivel de error comparable al de esquemas clásicos 

de segundo orden, efecto que ha sido corroborado mediante comparaciones directas de tiempo de 

ejecución y uso de memoria (Zheng et al., 2025). 

Comparación integral de estabilidad, convergencia y costo computacional 

Los estudios comparativos que incorporan operadores de tipo summation-by-parts y variantes 

explícitas estabilizadas muestran que la optimización de los estencils cerca de las fronteras y el uso 

de técnicas de estabilización temporal permiten mejorar de forma notable la precisión global y la 

eficiencia computacional, particularmente en problemas de difusión y reacción donde los errores 

de frontera y la rigidez del sistema influyen de manera decisiva en el comportamiento de la 

solución. Es así que, se aprecia esquemas explícitos estabilizados como es el caso de Dufort–

Frankel o métodos hopscotch, los cuales compiten de manera favorable con métodos implícitos en 

términos de eficiencia computacional bajo ciertos condicionamientos de que se seleccionen 
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adecuadamente los parámetros del mallado debido a que permiten utilizar pasos temporales 

mayores que FTCS sin perder estabilidad donde se mantiene ciertos errores aceptables para 

aplicaciones prácticas (Stiernström et al., 2023; Khayrullaev et al., 2025). 

De igual forma, los resultados obtenidos con esquemas Crank–Nicolson extendidos a dominios 

dependientes del tiempo indican que es posible mantener estabilidad y convergencia temporal de 

segundo orden incluso bajo configuraciones geométricas variables, siempre que se introduzcan 

técnicas de extensión implícita y estabilización adecuadas, aunque con un incremento adicional en 

la complejidad algorítmica y en el costo computacional por paso temporal (Frei & Singh, 2023). 

De esta manera, los resultados indican la falta de existencia de un esquema óptimo donde se 

desarrolle el equilibrio entre estabilidad, precisión y costo computacional en dependencia del tipo 

de ecuación, de régimen de mallado y de condiciones de frontera consideradas lo que convierte en 

necesario evaluar de manera conjunta las métricas de error, límites de estabilidad y tiempo de 

cómputo para seleccionar el método más adecuado en cada contexto. En este sentido, los datos 

comparativos presentados en la literatura analizada se sintetizan gráficamente en la Figura 1, donde 

se ilustra la relación entre el error numérico y el costo computacional para distintos esquemas bajo 

configuraciones estándar de discretización. 
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Figura 2.   

Error L2 vs. costo computacional 

 

En cuanto a la información expuesta en la Figura 1, en la misma se aprecia que los esquemas 

explícitos clásicos cuentan con una pendiente muy determinada en cuanto a una relación error–

costo cuando el paso temporal se aproxima al límite de estabilidad. Dicho análisis implica pequeñas 

reducciones requeridas en cuanto a un incremento importante en el tiempo de cómputo debido a la 

necesidad de refinar la malla espacial y temporal. Por otro lado, los esquemas implícitos y 

semimplícitos señalan un ligero avance en cuanto a la relación planteada debido a la permisividad 

de mantener errores bajos con pasos temporales mayores a pesar de que cada iteración temporal 

signifique un mayor costo computacional asociado a la resolución de sistemas lineales.  

De la misma manera, la figura plantea esquemas compactos de alto orden y una metodología 

explícita que se estabiliza en una región intermedia del diagrama la cual fusiona determinados 

errores con costos computacionales moderados de manera esencial en simulaciones donde se 

prioriza la eficiencia global frente a la simplicidad de implementación. Dicha situación determina 

las condiciones deficientes de mallado uniforme y fronteras de tipo Dirichlet o Neumann donde 

dichos esquemas ofrezcan un compromiso atractivo entre precisión y eficiencia en casos de que 

disponga una implementación cuidadosa de operadores espaciales y control adecuado de 
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parámetros de estabilidad. Por añadidura, el análisis gráfico fundamenta la conclusión de que una 

metodología cuantitativa guiada en un criterio integral la cual considere no solo el orden de 

convergencia teórico, sino también la estabilidad práctica y el costo computacional efectivo. 

 

Discusión 

Los hallazgos reportados en los resultados permiten una interpretación comparativa más fina sobre 

el equilibrio entre estabilidad, convergencia y costo computacional en esquemas numéricos para 

ecuaciones diferenciales parciales, evidenciándose que la superioridad práctica de un método no 

puede inferirse únicamente desde su clasificación como explícito o implícito, sino desde el 

mecanismo por el cual el esquema controla, o no controla, el crecimiento de energía discreta, el 

acoplamiento entre error temporal y espacial, y la sensibilidad frente a condiciones de frontera, 

interfaces o términos rígidos. En virtud de esta lectura, las formulaciones basadas en principios 

energéticos y en operadores con propiedad summation-by-parts, combinadas con imposición débil 

de condiciones mediante SAT, constituyen un punto de inflexión en la discusión de estabilidad 

para ecuaciones de onda, porque la derivación de estimaciones energéticas no solo justifica 

estabilidad en sentido L2, sino que delimita de forma explícita qué términos de frontera gobiernan 

la robustez del método y cómo la incorporación de disipación numérica puede diseñarse de manera 

estructurada sin recurrir a penalizaciones dependientes del mallado, lo cual adquiere particular 

relevancia cuando se consideran fronteras de Dirichlet o condiciones de interfaz en medios 

heterogéneos, donde la elección de parámetros suele ser la principal fuente de fragilidad en 

implementaciones de alto orden (Wang et al., 2022). Cabe resaltar que esta perspectiva no se limita 

a ecuaciones hiperbólicas, ya que en modelos parabólicos y sistemas isotrópicos no lineales, las 

estimaciones de error y la estructura del operador temporal también determinan el margen real de 

estabilidad y la eficiencia, por lo que la discusión debe mantenerse centrada en la interacción entre 

el operador espacial, el integrador temporal y el tratamiento de la no linealidad. 

Por consiguiente, cuando la atención se traslada a ecuaciones parabólicas y a sistemas acoplados 

donde la rigidez se intensifica por términos no lineales, anisotropías o condiciones de frontera 

exigentes, la evidencia sugiere que las familias semimplícitas del tipo Crank–Nicolson, así como 

sus variantes ADI, constituyen una solución metodológicamente consistente al problema de 

equilibrar precisión y estabilidad, porque sostienen orden temporal de segundo orden y, al mismo 
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tiempo, permiten ampliar el paso temporal sin desencadenar inestabilidades típicas de esquemas 

explícitos, aunque el precio sea un incremento en el costo por paso debido a la resolución de 

sistemas lineales o al particionamiento direccional, aspecto que se vuelve más visible en 

configuraciones bidimensionales y tridimensionales. En cuanto un contexto similar, los artículos 

analizados aportan estimaciones rigurosas del error para esquemas Crank–Nicolson–ADI en 

sistemas parabólicos no lineales lo que apoya la moción de que la elección de discretización no 

debe justificarse por tradición sino por garantías de precisión con control explícito del residuo 

cuantitativo lo cual es especialmente pertinente en problemas con capas internas o frentes de 

transición como los modelos de campo de fase (Sfyrakis & Tsoukalas, 2025). De modo 

complementario, el análisis detallado de metodologías implícitas e implícito-explícitas tipo ADER 

y DeC, reinterpretadas como esquemas de Runge–Kutta para caracterizar regiones de estabilidad y 

posteriormente acopladas con discretizaciones espaciales por diferencias finitas en ecuaciones de 

advección–difusión, amplía la discusión al mostrar que no basta con declarar un método como A-

estable o de región amplia, sino que es necesario demostrar cómo esas propiedades se traducen en 

restricciones tipo CFL o en cotas simples sobre Δt al pasar del modelo ODE al caso PDE, cuestión 

que incide directamente en el costo total de simulación y en la coherencia del orden global cuando 

se persiguen esquemas de alto orden en tiempo y espacio (Öffner et al., 2025). 

Aun así, la discusión no conduce a una conclusión donde lo implícito sea siempre preferible, debido 

a que la eficiencia real en muchas aplicaciones depende de la paralelización, del acceso a memoria 

y del costo de los solucionadores lineales, por lo que las variantes explícitas estabilizadas y las 

formulaciones que incorporan suavizado controlado o reducción de rango adquieren un papel 

estratégico, sobre todo cuando el objetivo es sostener estabilidad práctica en escenarios 

inherentemente mal condicionados. En este sentido, los esquemas explícitos estabilizados para 

marcha hacia atrás en el tiempo en problemas de asimilación de datos acoplados calor–onda 

ejemplifican una idea clave para la discusión, que consiste en aceptar la inestabilidad inherente de 

ciertos planteamientos inversos y, en lugar de intentar eliminarla por completo, diseñar operadores 

compensatorios de suavizado que atenúen el crecimiento explosivo del error, permitiendo 

reconstrucciones útiles en intervalos temporales no triviales, lo que abre una línea interpretativa 

sobre cómo la estabilidad numérica puede concebirse como propiedad diseñable incluso en 

formulaciones esencialmente mal planteadas (Carasso, 2025).  
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La literatura analizada muestra que el tratamiento de la frontera y la gestión de dominios no 

acotados o con capas límite puede dominar el error global incluso cuando el núcleo del esquema 

es de alto orden, por lo que una parte sustancial de la discusión debe centrarse en métodos que 

atacan directamente ese cuello de botella. En modelos de conducción de calor con efectos de fase 

dual y dominios semi-infinitos, el uso de condiciones de frontera artificiales de alto orden 

transformadas desde formulaciones en dominio no acotado, acompañado de análisis de estabilidad 

en norma L2 y de pruebas numéricas, permite sostener estabilidad incondicional y convergencia 

de segundo orden en tiempo y espacio para el problema reducido, lo que refuerza que la estabilidad 

no depende solo del integrador temporal, sino de la fidelidad con la que se representa el 

comportamiento asintótico en el borde computacional (Bu et al., 2025). En escenarios de singular 

perturbación y ecuaciones parabólicas con retardo, la evidencia indica que la convergencia 

uniforme, entendida como estabilidad y control del error independientemente de parámetros 

pequeños, requiere estrategias específicas como factores de ajuste y aproximaciones tipo spline 

para evitar oscilaciones en capas límite, mostrando que en mallas uniformes el diseño de 

operadores “fitted” puede ser más determinante que elevar el orden formal del esquema, por lo que 

la discusión de precisión debe mantenerse vinculada a la estructura multiescala del problema 

(Hassen & Duressa, 2025). Desde una consideración metodológica, los resultados presentados 

impulsan la importancia de trabajos de ecuaciones fraccionarias difusión–onda donde la estabilidad 

y la convergencia se evalúan a través de métodos de energía los cuales discreta mediante hipótesis 

por el cual se destaca la linealización controlada y el uso de discretizaciones tipo Crank–Nicolson 

con fórmulas desplazadas con la finalidad de obtener derivadas fraccionarias las cuales permiten 

sostener convergencia demostrable y flexibilidad para términos no lineales (Elmahdi & Huang, 

2021). 

Finalmente, cuando se considera la necesidad de alta precisión sin incrementar de manera 

prohibitiva el costo, emergen enfoques que, aunque no sean diferencias finitas clásicas en el sentido 

estricto, aportan a la discusión sobre el balance buscado en esta revisión, debido a que desplazan 

la frontera de lo que se entiende por eficiencia bajo condiciones estándar. Las técnicas de colación 

con polinomios de alto grado para ecuaciones de conducción de calor con condiciones de Dirichlet 

muestran estabilidad incondicional mediante análisis de Von Neumann y reportan comparaciones 

tabulares con soluciones analíticas, lo que sugiere que, para ciertas configuraciones 1D, elevar el 
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orden del aproximante espacial puede entregar precisión elevada con implementaciones 

relativamente directas, siempre que se mantenga control sobre el esquema temporal y la estructura 

de los puntos de colación (Kutluay et al., 2025). De forma complementaria, los esquemas 

conservativos tipo Crank–Nicolson para ecuaciones dispersivas como KdV aportan un argumento 

central para la discusión, que consiste en que la conservación discreta en norma L2 y el 

aprovechamiento de efectos de suavizado locales pueden ser tan importantes como el orden formal, 

especialmente cuando se pretende converger a soluciones débiles desde datos iniciales no suaves, 

aspecto que amplía el alcance interpretativo de la revisión hacia ecuaciones donde la estabilidad se 

expresa como conservación y donde la precisión se evalúa también por la fidelidad de invariantes, 

no solo por normas de error clásicas (Dwivedi & Sarkar, 2023).  

 

 

Conclusiones 

La presente revisión bibliográfica permite concluir que el análisis de estabilidad y convergencia en 

métodos numéricos de diferencias finitas para ecuaciones de calor y onda debe abordarse desde 

una perspectiva integral, en la cual el orden de convergencia formal, la estabilidad práctica y el 

costo computacional efectivo se evalúen de manera conjunta y no como propiedades aisladas. La 

evidencia teórica y numérica analizada confirma que los esquemas explícitos clásicos, si bien 

resultan atractivos por su simplicidad y bajo costo por iteración, se encuentran fuertemente 

limitados por restricciones de estabilidad tipo Courant–Friedrichs–Lewy, lo que reduce su 

eficiencia global cuando se requieren mallas finas o simulaciones de largo tiempo. 

Por el contrario, la metodología implícita y semimplícita señalan un desempeño robusto bajo 

condiciones estándar de mallado uniforme y fronteras Dirichlet o Neumann lo cual mantiene cierto 

grado de convergencia de segundo orden y estabilidad mejorada frente a incrementos del paso 

temporal a pesar de un mayor costo computacional asociado a la resolución de sistemas 

algebraicos. De la misma manera, la revisión evidencia que los esquemas explícitos estabilizados 

y la metodología de alto orden representan alternativas relevantes debido a que permiten reducir el 

error global o ampliar las regiones de estabilidad sin un incremento proporcional del costo 

computacional total. 
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Es así que, los resultados analizados señalan la no existencia de sistema cuantitativo universal que 

sea superior o apto a todas las configuraciones relacionadas al equilibrio entre estabilidad, precisión 

y costo computacional. De igual manera, la principal contribución de dicha revisión radica en 

proporcionar un marco comparativo que facilite la selección informada de diferencias finitas en 

aplicaciones científicas e ingenieriles, así como tremas relacionados a la misma.   
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