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Resumen 

 
La aproximación de funciones (superficies) que presentan fuertes (o grandes) variaciones o varían 

rápidamente (funciones no regulares) a partir de un conjunto de datos conocidos (dispersos y/o 

regularmente distribuidos) de tipo Lagrange, (𝜉𝑗, 𝑓(𝜉𝑗))𝑗=1
𝑁  de ℝ2 ×ℝ, con 𝑁 ∈ ℕ = {1,2, … }, para 

una función 𝑓 (aproximada) definida explícitamente por 𝑧 = 𝑓(𝑥, 𝑦), es un problema concreto que 

posee un importante número de aplicaciones, tales como: aproximación de frentes marítimos a partir 

de datos batimétricos; aproximación de superficies con fallas en el campo de las Geociencias; entre 

otras. Dentro de este contexto, el propósito del estudio fue revisar y presentar los detalles, en el 

sentido de: estructura, requisitos, procesos, funcionalidad y resultados; de algunos de los métodos 

de aproximación de funciones no regulares, con hincapié en aquellos útiles para Superficies 

Discontinuas (SD) las cuales son originadas por la variación rápida en el conjunto de datos. En este 

sentido, la  investigación fue abordada bajo un enfoque cualitativo no iterativo, de tipo descriptivo, 

con diseño de investigación documental; fundamentada en documentos (libros y artículos) de 

carácter científicos relacionados con los métodos de aproximación de superficies explícitas a partir 

de un conjunto de datos que presentan fuertes variaciones. Como resultados, se obtuvo un panorama 

de los procesos generales utilizados en la aplicación de algunos de los métodos de aproximación más 

notables para superficies discontinuas. En conclusión,  conocer los detalles de ciertos métodos 

estándar para aproximar superficies discontinuas permite elegir el enfoque más adecuado, ya sea 

aplicando los existentes o diseñando metodologías propias para  optimizar los resultados esperados. 

 

Palabras clave: Funciones no regulares, Aproximación, Métodos de aproximación, Datos de 

variación rápida, Aproximación de superficies discontinuas. 
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The approximation of functions (surfaces) that present strong (or large) variations or vary rapidly 

(non-regular functions) from a set of data known (sparse and/or regularly distributed) of Lagrange-

type, (𝜉𝑗, 𝑓(𝜉𝑗))𝑗=1
𝑁  de ℝ2 × ℝ, with 𝑁 ∈ ℕ = {1,2, … }, for an explicitly defined function 𝑓 

(approximate) for 𝑧 = 𝑓(𝑥, 𝑦), is a specific problem that has a significant number of applications, 

such as: approximation of maritime fronts from bathymetric data; approximation of surfaces with 

faults in the field of Geosciences; among other. Within this context, the purpose of the study is to 

review and present the details, in the sense of: structure, requirements, processes, functionality and 

results; of some of the approximation methods of non-regular functions, with emphasis on those 

useful for discontinuous surfaces which are caused by rapid variation in the data set. In this sense, 

the research was approached under a non-iterative qualitative approach, of a descriptive type, with a 

documentary research design; based on documents (books and articles) of a scientific nature related 

to the approximation methods of explicit surfaces from a set of data that present strong variations. 

As a result, an overview of the general processes used in the application of some of the most notable 

approximation methods for discontinuous surfaces was obtained. In conclusion, knowing the details 

of certain standard methods for approximating discontinuous surfaces allows you to choose the most 

appropriate approach, either by applying existing ones or by designing your own methodologies to 

optimize the expected results. 

 

Keywords: Non-regular functions, Approximation, Approximation methods, Rapidly varying data, 

Approximation of discontinuous surfaces.  

 

 

 

 

 

 

 

 

 

Introducción 
En muchas de las aplicaciones en ciertos campos de la matemática y áreas afines, se encuentran con 
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el problema de aproximación de funciones (superficies) a partir de un conjunto de datos (o muestras) 

conocidos de tipo Lagrange, a saber, (𝜉𝑗 , 𝑓(𝜉𝑗))𝑗=1
𝑁  de ℝ2 ×  ℝ, con 𝑁 ∈ ℕ = {1,2, … }, 

regularmente distribuidos o dispersos que presentan fuertes o grandes variaciones (o varían 

rápidamente), donde 𝑓 es una función (llamada aproximada) definida explícitamente por 𝑧 =

𝑓(𝑥, 𝑦), por lo menos, en un conjunto de puntos (o nodos), 𝑋𝑁 = {𝜉𝑗 ∈ ℝ
2 ∶ 𝑗 = 1,2, … ,𝑁}, en un 

dominio Ω no vacío, abierto, convexo y acotado de dos dimensiones. Específicamente, el problema 

de construcción de una función 𝑠 (respectivamente, curva y/o superficie) regular (que se llamará, 

aproximante) se realiza a partir de un conjunto de datos, aparece en muchos problemas de interés 

para la geología, geofísica, oceanografía, las ciencias e ingenierías, entre otras áreas y disciplinas; 

en los cuales, es común tratar con un conjunto de datos que muestran estructuras complicadas (e.g., 

como son las fallas), cristalizadas por la presencia de fuertes o grandes variaciones.   

 

Esto ocurre como aplicación en problemas de construcción y/o aproximación de: frentes marítimos 

a partir de datos batimétricos; superficies con fallas en el campo de las Geociencias, entre otras. Por 

ejemplo, cuando se describe la topografía de las superficies del fondo marino (Fosa de Tonga, Fosa 

de Japón, Fosa de Kermadec, Fosa de las Marianas, entre otras), a partir de datos de batimetría (Gout 

& Ramière, 2003); asimismo, la obtención de la topografía necesaria para el pre-procesamiento de 

datos que se utilizan en la formulación de modelos de derrame de lava; presencia de estructuras 

geológicas con fallas; además de, cordilleras, volcanes, islas o la forma de entidades geológicas; así 

como también, cuando se trata de la caracterización y modelado de yacimientos en la industria del 

petróleo, vulcanología, entre otras, (Gout et al., 2008). En todas estas circunstancias, muchas veces 

se requiere de la construcción de superficies regulares que aproximen las superficies no regulares 

observadas, desde el conocimiento de un conjunto de datos conocidos para estas últimas. Aquí, las 

funciones no regulares son aquellas que presentan fuertes o grandes variaciones derivadas del 

conjunto de datos.  

 

En este sentido, lograr una representación regular (o suave) lo más exacta posible de la superficie 

irregular a través de un proceso de adaptación de datos precisos para su descripción, es un problema 

de gran importancia para las áreas aplicadas, especialmente cuando se necesita describir la topografía 

de modelos con irregularidad superior, (Gout et al., 2008). Para cuya resolución se han usado las 

ideas de aproximación de funciones (curvas y/o superficies) a partir de datos que presentas fuertes y 

rápidas variaciones.  

 

Dentro de este contexto, para aproximar funciones (curvas y/o superficies) a partir de un conjunto 

de datos conocidos, funcionan bien para datos regulares (aquí, serán entendidos como datos que no 

presentan fuertes ni rápidas variaciones), donde se arrojan excelentes resultados. Pero, en la 

presencia de datos no regulares (esto es, datos que presentan grandes o variaciones rápidas) su 

eficacia no es tan buena. Específicamente, el principal problema que se presenta con las 

aproximaciones de funciones no regulares, gira entorno a las fuertes y rápidas variaciones derivadas 

del conjunto de datos, puesto que la utilización de los métodos tradicionales, en términos generales, 

originan inestabilidad por exceso e insuficiencia, o simplemente, oscilaciones indeseables cerca de 
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las pendientes pronunciadas, conocidas como el fenómeno de Gibss (véase, por ejemplo, Gibbs, 

1899; Carslaw, 1930; Gottlieb & Shu, 1997, Boyd,  2001; Strang & Nguyen, 1996), que según Gout 

et al. (2008) puede dificultar y obstaculizar de forma local e incluso a nivel global la aproximación 

de la función en cuestión. 

 

Al respecto, en la literatura científica se encuentran trabajos e investigaciones que estudian la 

aproximación de funciones que presentan fuertes y rápidas variaciones en el conjunto de datos. Entre 

algunos métodos clásicos para aproximación de superficies discontinuas (no regulares), se pueden 

mencionar: Método de Elementos Finitos Enriquecidos (Belytschko et al., 1999), Método de 

Elementos Finitos con Interfases Fortalecidas (Ortiz & Pandolfi, 1999), Métodos de Mallado 

Independiente (Belytschko et al., 1994), Método de Descomposición de Dominio con Condiciones 

de Transmisión Discontinuas (Lions, 1990; Alart & Curnier, 1991) y Esquemas de Volúmenes 

Finitos para Captura de Discontinuidades (Harten et al., 1987; Liu et al., 1994). Estos métodos 

representan enfoques fundacionales para tratar discontinuidades en simulaciones numéricas, 

abarcando fracturas, interfaces materiales y ondas de choque. 

 

Donde concretamente, se proponen varias técnicas específicas que, por lo general, son 

modificaciones o adaptaciones de las técnicas o algoritmos de los métodos para la aproximación de 

funciones regulares, que buscan la construcción de funciones regulares aproximantes a partir de un 

conjunto de datos conocidos. Lo que resulta en versiones análogas que requieren para su aplicación 

tomar en cuenta el conjunto donde se producen las rápidas o grandes variaciones, conocido como el 

conjunto de discontinuidad, el cual, frecuentemente, es desconocido. Entonces, específicamente, en 

la presencia de fuertes y rápidas variaciones en el conjunto de datos, se intenta un ajuste con el uso 

de métodos clásicos de aproximación de funciones regulares, que disciernen en el trato del conjunto 

de datos regulares con el de datos no regulares.  

 

Dentro de estos trabajos mencionados, los métodos de aproximación propuestos contemplan la idea 

central del proceso de aproximación de funciones no regulares, la cual puede ser cristalizada a partir 

de los siguientes dos pasos: P1) Paso de detección de discontinuidad: localizar el conjunto de 

discontinuidad a partir de un conjunto de datos dados; y P2) Paso de aproximación: aproximar la 

función observada sobre el dominio de los datos incluyendo el conjunto de discontinuidad.  

 

No obstante, a pesar que el problema de aproximación de funciones (curvas y/o superficies) no 

regulares ha sido estudiado bajo determinadas condiciones, tanto para funciones explicitas como 

para funciones paramétricas, todavía es un tema novedoso e interesante que se encuentra 

frecuentemente en varios campos de aplicaciones científicas, como pueden ser, entre muchos, la 

modelación en geología o las técnicas de reconstrucción de imágenes. Además, debido a la presencia 

de fuertes y rápidas variaciones en el conjunto de datos conocidos, cuando se intenta un ajuste 

utilizando métodos de aproximación convencionales, es posible obtener buenos resultados en el caso 

de ajuste de curvas, pero son menos precisos los resultados en el caso de ajustes de superficies, 

debido a la posibilidad que se produzca el fenómeno de Gibss. Es decir, la aparición de algunos 
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meneos u oscilaciones no deseadas que a menudo se generan alrededor de algunos datos no regulares, 

cuyos valores pueden cambiar rápidamente en comparación con datos regulares vecinos. Así, incluso 

si estos métodos clásicos dan buenos resultados en el caso de ajuste de curvas, en el caso de 

aproximación de superficies, los resultados pueden ser mejorados.  

 

Aunado a esto, es posible estudiar lo satisfactorio de los resultados obtenidos en cuanto a la calidad 

de la aproximación, la dificultad de la implementación y el tiempo de ejecución, entre otros. 

También, resulta conveniente considerar que los pasos: 𝑃1) Paso de detección de discontinuidad y 

𝑃2) Paso de aproximación; involucrados en el problema de aproximación de funciones no regulares 

forman parte del mismo problema, debido a que muchos de los métodos existentes sólo consideran 

la segunda parte del problema de aproximación mencionado, donde se solicita como requisito para 

su implementación información sobre las grandes variaciones en el conjunto de datos. Además, 

resulta conveniente considerar que el paso de detección y el de aproximación forman parte del mismo 

problema, pues, no siempre son compatibles los resultados de las investigaciones que los consideran 

por separados (Abancín et al., 2024). Es decir, cuando se tratan de modo independiente, no siempre 

resulta fácil adaptar y acoplar los resultados del primero de ellos con las condiciones de entrada del 

segundo.  

 

Por todo lo antes expuesto, el propósito del presente artículo es indagar, recoger, analizar y organizar 

información, sin pretender ser exhaustivo, sobre algunos de los elementos representativos 

involucrados en la aproximación de funciones (curvas y/o superficies) no regulares. Esto con 

intenciones que sirvan de referencia para, en un primer momento, introducir los aspectos elementales 

que contemplan los métodos de aproximación de tales funciones, como son: los requerimientos, 

procesamiento, funcionalidad y resultados, etc.  A su vez, que se describe en forma sencilla para los 

lectores noveles que se inician en la temática abordada, con hincapié en las herramientas matemáticas 

que se usan en el proceso de aproximación de este tipo de funciones; para después, en un segundo 

instante, sirvan de guía para la construcción de aproximantes regulares de funciones no regulares a 

partir del conjunto de datos. Todo esto, a partir de un cuerpo de documentos referenciales tales como 

libros y artículos científicos que abordan el tópico planteado.  

 

Se justifica lo expuesto anteriormente, por un lado, debido a que ayudará a develar y clarificar ante 

los interesados, el abanico de posibilidades que tiene la aproximación de funciones no regulares, 

tanto dentro de la propia matemática, como para el área de las ciencias aplicadas, tales como, 

Geociencias, entre otras; a su vez, servirá de orientación para aquellas personas que quieran 

involucrarse con esta temática. Mientras por otro, se espera exhortar a los investigadores a indagar 

en la posibilidad de articular la gama de herramientas ofrecidas en la literatura concerniente a los 

métodos de aproximación. Aspectos que bien acoplados contribuirá a la cristalización de técnicas de 

búsqueda y construcción de óptimas funciones regulares aproximantes para las funciones no 

regulares. Aunado a que, la aproximación numérica de funciones de varias variables que presentan 

discontinuidades es un tema relevante de investigación, debido a sus aplicaciones en ciencias, 

geofísica, imágenes médicas, gráficos por computadoras, etc. (Parra, 1999). 
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Es así que, lo anterior rebela la importancia de las extensas aplicaciones que tiene la aproximación 

de funciones (curvas y superficies) no regulares. En este sentido, la relevancia del presente trabajo 

radica en torno a dos aspectos: teórico y aplicaciones. En cuanto a lo teórico, debido a que se presenta 

de forma organizada los elementos teóricos referentes a la aproximación de funciones no regulares 

de varias variables. Esto aporta un espacio de discusión y reflexión con la finalidad de motivar el 

interés a explorar las posibilidades de involucrarse con este tipo de aproximación, articulándolas 

para enriquecer y fortalecer estos métodos. Por tanto, contribuirá a posibles aplicaciones futuras, 

puesto que la aproximación de funciones no regulares es un tópico no acabado, debido a sus múltiples 

usos en diferentes áreas, como por ejemplo, el procesamiento de imágenes, entre otras. 

 

Material y métodos 
En esta sección se detallan los materiales y el enfoque metodológico utilizados para alcanzar los 

objetivos propuestos en la presente investigación, centrada en la revisión y análisis de los métodos 

clásicos para aproximar superficies discontinuas. 

Material 

Para la realización del estudio teórico y comparativo, se utilizó como base principal la literatura 

científica especializada y los artículos seminales que constituyen los fundamentos de cada método. 

La organización, análisis y visualización conceptual de los detalles estructurales de cada técnica se 

realizó mediante una revisión detallada. Para la presentación de los resultados y la síntesis de la 

información, se empleó un entorno de documentación técnica que permitió integrar el análisis 

narrativo con las formulaciones matemáticas clave.  

Métodos 

La metodología consistió en un análisis crítico y estructurado de métodos clásicos, agrupados en 

dos categorías interdependientes: detección y aproximación. Para la detección de discontinuidades, 

se revisaron y compararon cuatro enfoques paradigmáticos: el análisis multiescala mediante 

ondículas (wavelets) de Mallat y Zhong (1992), los detectores de bordes basados en difusión como 

el de Canny (1986), los métodos estadísticos de detección de cambio de régimen (Page, 1954; 

Hinkley, 1971) y las técnicas de ajuste local por mínimos cuadrados (Loader, 1999). Este análisis 

se centró en sus principios, requisitos de datos, ventajas y limitaciones. 

 

Para la aproximación de superficies discontinuas, el estudio se focalizó en tres métodos numéricos 

clásicos: el método de Elementos Finitos de Galerkin Discontinuos (DG-FEM), cuyo desarrollo 

moderno fue liderado por Cockburn y Shu (1989, 1998); los métodos de Partición de la 

Unidad/Elementos Finitos Generalizados (PUM/GFEM), con fundamentos establecidos por 

Melenk y Babuška (1996); y los métodos de splines de tensión variable, cuyas bases fueron 

sentadas por Schweikert (1966) y Franke (1985). El análisis de cada método se realizó bajo una 

estructura uniforme que incluyó su formulación matemática, requisitos, proceso de 

implementación, funcionalidad y resultados típicos, donde se pone especial énfasis en su capacidad 

para manejar la variación rápida y los saltos en los datos. 
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Finalmente, con base en la revisión integrada de estos métodos, se propuso un algoritmo teórico 

general. Concretamente, un Algoritmo Integrado de Detección y Aproximación Adaptativa para 

Funciones con Discontinuidades (AIDA-FD) que sintetiza un posible flujo de trabajo para abordar 

problemas de aproximación de funciones no regulares. Este algoritmo integra las fases de 

detección, selección adaptativa del método de aproximación y validación iterativa.  

 

Resultados 
Esta sección se dedicó a exponer los principales resultados obtenidos a través de una revisión 

bibliográfica minuciosa, enfocada en los detalles de algunos métodos para aproximar superficies 

discontinuas. Esto con la finalidad de realizar un análisis e interpretación que, cristalizo una 

perspectiva crítica sustentada teóricamente con respecto a esta temática.   

Análisis de resultados 

Para iniciar se presentan algunos métodos detección de discontinuidades, para seguidamente 

exponer otros métodos relacionados con la aproximación de superficies discontinuas.  

 

Métodos clásicos para detectar o localizar discontinuidades  

Este aparatado está dedicado a revisar y presentar los detalles (estructura, requisitos, procesos, 

funcionalidad y resultados) de métodos clásicos para identificar la localización y características de 

discontinuidades en conjuntos de datos, un paso crítico previo a la aproximación de superficies 

discontinuas. 

 

𝑴𝟏) Método de Mallat-Zhong: Análisis Multirresolución de Wavelet 

Autores y desarrollo clásico: El método de Mallat-Zhong, fundamentado en el análisis 

multiresolución mediante ondículas (wavelets), establece una conexión profunda entre la 

persistencia de los módulos máximos de la transformada a través de las escalas y la teoría de 

singularidades. Cuando se utiliza una ondícula que es la derivada de una función de suavizado, la 

transformada captura la derivada de la señal suavizada a diferentes niveles de resolución. Una 

singularidad genuina, como un salto discontinuo, genera un módulo máximo cuya magnitud decae 

de manera característica (lenta y predecible) al aumentar la escala, un comportamiento cuantificado 

por el exponente de Hölder local que describe la regularidad del punto singular. En contraste, las 

fluctuaciones debidas al ruido producen módulos máximos que decaen abruptamente en escalas 

más gruesas. Así, el seguimiento y análisis de la evolución de estas líneas de módulos máximos no 

solo permite localizar discontinuidades con precisión, sino también distinguirlas de artefactos 

ruidosos y caracterizar su naturaleza matemática (Mallat & Zhong, 1992). 

 

Estructura y requisitos: Se basa en la Transformada Wavelet Continua (CWT, por sus siglas en 

inglés) o en una implementación discreta piramidal. Utiliza una wavelet que es la derivada de una 

función de suavizado (por ejemplo, una wavelet de tipo spline cúbico o la wavelet de Marr). 

Requiere datos muestreados de manera uniforme o regular. 

 

Proceso y funcionalidad: 

▪ Se calcula la transformada de wavelet de la señal o datos de superficie en múltiples escalas.  
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▪ Se localizan los módulos máximos (picos) de los coeficientes de wavelet a través de las escalas. 

Un punto singular (como un salto) produce una cadena de módulos máximos que persiste a 

través de las escalas más finas. 

▪ El cruce por cero de los coeficientes de wavelet (cuando se usa una wavelet derivada) indica la 

ubicación precisa de la discontinuidad en cada escala. La propagación de estos cruces por cero 

a través de las escalas identifica la singularidad. 

 

Resultados: El método produce un mapa de líneas de discontinuidades (en 2D) o puntos de salto 

(en 1D). La magnitud del módulo máximo está relacionada con la fuerza de la discontinuidad. Es 

efectivo para distinguir discontinuidades de ruido, ya que el ruido genera módulos máximos que 

decaen rápidamente en escalas más gruesas, mientras que una discontinuidad verdadera persiste. 

 

Ventajas: 

▪ Localización multiescala: Identifica la escala a la que pertenece la singularidad, diferenciando 

ruido (escalas finas) de discontinuidades estructurales (persistencia en múltiples escalas). 

▪ Precisión de localización: Proporciona una ubicación precisa de la discontinuidad, 

especialmente en señales 1D o a lo largo de perfiles 2D. 

▪ Caracterización: La tasa de decaimiento de los módulos máximos a través de las escalas brinda 

información sobre el tipo de singularidad (salto, pico cúspide). 

 

Desventajas: 

▪ Sensibilidad a la alineación: La detección óptima depende de la elección de la wavelet madre. 

Las wavelets con más momentos desaparecidos pueden no detectar ciertos tipos de 

discontinuidades. 

▪ Complejidad en 2D/3D: Extender el análisis de módulos máximos a superficies 2D o 3D es 

algorítmicamente complejo y computacionalmente costoso. 

▪ Ruido estructurado: Puede confundir patrones de ruido de alta frecuencia con discontinuidades 

genuinas si no se establece un umbral adecuado. 

 

Formulación matemática: 

Sea 𝜓(𝑡) una wavelet que es la derivada de una función de suavizado 𝜃(𝑡), es decir, 𝜓(𝑡) =
𝑑𝜃

𝑑𝑡
. La 

Transformada de Wavelet Continua (CWT) de una señal 𝑓(𝑡) a la escala 𝑠 y posición 𝑢 es:  

 

𝑊𝑓(𝑠, 𝑢) = 〈𝑓, 𝜓𝑠,𝑢〉 = 𝑓 ∗ 𝜓𝑠̅̅ ̅, 

 

donde 𝜓𝑠,𝑢(𝑡) =
1

√𝑠
𝜓(

𝑡−𝑢

𝑠
). Dado que 𝜓 es una derivada, se puede demostrar que 

𝑊𝑓(𝑠, 𝑢) = 𝑠
𝑑

𝑑𝑢
(𝑓 ∗ 𝜃𝑠̅)(𝑢). 

Por lo tanto, los módulos máximos locales de |𝑊𝑓(𝑠, 𝑢)| corresponden a los puntos de inflexión de 

𝑓 suavizada por 𝜃𝑠, y los cruces por cero de 𝑊𝑓(𝑠, 𝑢) indican los máximos locales de la pendiente, 
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es decir, las ubicaciones probables de saltos (Mallat & Zhong, 1992). 

 

𝑴𝟐) Método de Canny: Estimadores de detección de bordes basados en difusión  

Autores y desarrollo clásico: El desarrollo clásico en la detección de bordes basada en difusión 

encuentra su hito fundamental en el detector óptimo de Canny (1986), el cual implementa de 

manera eficiente un filtrado por gradientes con suavizado isotrópico Gaussiano. Sin embargo, su 

fundamento matemático más profundo y su evolución hacia métodos que preservan 

discontinuidades con mayor precisión se vinculan a la teoría de la difusión anisotrópica y la 

optimización de funcionales variacionales. Trabajos seminales como el modelo de difusión no 

lineal de Perona y Malik (1990) y el modelo de descomposición de imágenes de Rudinet et al. 

(1992) generalizan el concepto al plantear ecuaciones donde el coeficiente de difusión se modula 

según la magnitud del gradiente local, deteniendo activamente el suavizado en los bordes y 

permitiéndolo en regiones homogéneas. Estos marcos teóricos establecieron la base para entender 

y diseñar detectores que no solo identifican discontinuidades, sino que también preservan su 

localización y nitidez al evitar la difusión a través de ellas. 

 

Estructura y requisitos: En esencia, son métodos que involucran un paso de suavizado anisotrópico 

o guiado por gradientes, seguido de una detección de umbrales. Requieren datos en una malla 

estructurada (como una imagen o grilla regular). 

 

Proceso y funcionalidad: 

▪ Suavizado con derivada: Se convoluciona la señal/imagen con la derivada de una Gaussiana, lo 

que equivale a calcular el gradiente después de un suavizado isotrópico. 

▪ Supresión de no-máximos: En la dirección del gradiente, se eliminan los píxeles que no son 

máximos locales, para afinar los bordes a un píxel de ancho. 

▪ Umbralización con histéresis: Se usan dos umbrales (alto y bajo). Los píxeles de gradiente por 

encima del umbral alto se marcan como bordes fuertes; los conectados a estos y por encima del 

umbral bajo se conservan; el resto se descartan. 

 

Resultados: Genera un mapa binario de bordes (discontinuidades) delgado (de un píxel de ancho) 

y conectado. Su solidez frente al ruido es alta debido al paso de suavizado y a la histéresis. Es más 

un detector práctico que un localizador cuantitativo de la magnitud del salto. 

 

Ventajas: 

▪ Robustez al ruido: El filtro Gaussiano inicial suprime eficazmente el ruido de alta frecuencia. 

▪ Bordes conectados y delgados: La supresión de no-máximos y la umbralización con histéresis 

producen contornos de un píxel de ancho y bien definidos. 

▪ Optimización teórica: El criterio de Canny (buena detección, buena localización, respuesta 

única) lo convierte en un estándar bien fundamentado. 

 

Desventajas: 
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▪ Suavizado de bordes: El filtro Gaussiano difumina la localización exacta del borde, 

especialmente para escalas grandes de la Gaussiana. 

▪ Parámetros sensibles: El desempeño depende críticamente de la selección del tamaño del kernel 

Gaussiano (𝜎) y de los umbrales alto y bajo. 

▪ Limitación a datos estructurados: Está diseñado naturalmente para imágenes (mallas regulares), 

siendo menos directa su aplicación a datos dispersos o no estructurados. 

 

Formulación matemática: 

▪ Convolución y gradiente: Dada una imagen  𝐼(𝑥, 𝑦), se calculan las derivadas suavizadas: 

𝐺𝑥 =
𝜕

𝜕𝑥
(𝐼 ∗ 𝐺𝜎),     𝐺𝑦 =

𝜕

𝜕𝑦
(𝐼 ∗ 𝐺𝜎) 

donde 𝐺𝜎(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒
(−

𝑥2+𝑦2

2𝜎2
)
. 

▪ Magnitud y dirección del gradiente: 

𝑀(𝑥, 𝑦) = √𝐺𝑥2 + 𝐺𝑦2 ,    ⊝ (𝑥, 𝑦) = tan−1 (
𝐺𝑦

𝐺𝑥
) . 

 

▪ Supresión de no-máximos: Para cada punto, se compara 𝑀(𝑥, 𝑦) con los dos vecinos en la 

dirección ⊝ (𝑥, 𝑦). Si no es el máximo local, se suprime. 

 

Umbralización con histéresis: Se utilizan dos umbrales 𝑇ℎ𝑖𝑔ℎ y 𝑇𝑙𝑜𝑤. Los píxeles con 𝑀 > 𝑇ℎ𝑖𝑔ℎ 

son bordes fuertes. Los píxeles con 𝑀 < 𝑇𝑙𝑜𝑤 se descartan. Los píxeles con 𝑇𝑙𝑜𝑤 ≤ 𝑀 ≤ 𝑇ℎ𝑖𝑔ℎ se 

mantienen solo si están conectados a un borde fuerte (Canny, 1986). 

 

𝑴𝟑) Método de cambio de régimen o segmentación  

Autores y desarrollo clásico: Basado en principios estadísticos clásicos de detección de cambios. 

Para señales 1D, la prueba de Page-Hinkley o el algoritmo CUSUM (Cumulative Sum) son 

referentes (Page, 1954; Hinkley, 1971). Para superficies 2D, se vincula a técnicas de segmentación 

de imágenes basadas en regiones. 

 

Estructura y requisitos: Asume que los datos pertenecen a diferentes regímenes estadísticos (por 

ejemplo, diferentes medias o varianzas) separados por la discontinuidad. Requiere un modelo 

estadístico para la distribución de los datos dentro de cada segmento homogéneo. 

 

Proceso y funcionalidad (Ejemplo 1D - CUSUM): 

▪ Se define una hipótesis nula (no hay cambio) y una hipótesis alternativa (hay un cambio en la 

media en un tiempo 𝑡). 

▪ Se calcula la suma acumulada de las diferencias entre las observaciones y la media estimada 

bajo la hipótesis nula. 

▪ Se monitorea esta suma acumulada. Cuando su valor absoluto excede un umbral predefinido, se 

declara la detección de un cambio de régimen (discontinuidad) en el punto donde la suma 
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empezó a desviarse consistentemente. 

  

Resultados: Identifica los puntos de cambio y segmenta los datos en regiones estadísticamente 

homogéneas. Proporciona una detección probabilística y es eficaz cuando la discontinuidad se 

manifiesta como un cambio en las propiedades estadísticas, no solo geométricas. 

 

Ventajas: 

▪ Fundamento estadístico sólido: Proporciona un marco probabilístico para la detección, 

permitiendo pruebas de significancia. 

▪ Robustez a ruido estocástico: Está diseñado para funcionar en presencia de ruido estadístico, 

modelando los datos dentro de cada segmento. 

▪ Detección de cambios en propiedades: Puede detectar no solo saltos en el valor, sino cambios 

en la varianza, tendencia u otros parámetros del modelo. 

 

Desventajas: 

▪ Conocimiento a priori del modelo: Requiere asumir o conocer la distribución estadística de los 

datos en cada segmento (por ejemplo, normal, Poisson). 

 

▪ Complejidad computacional para múltiples cambios: Los algoritmos exactos para detectar 

múltiples puntos de cambio son costosos (𝑂(𝑛2) o peor). 

▪ Sensibilidad a supuestos: Si el modelo estadístico real de los datos se desvía del asumido, la 

detección puede ser errónea. 

 

Formulación matemática (Algoritmo CUSUM): Se asume una secuencia de observaciones 

independientes {𝑥1, 𝑥2, … , 𝑥𝑛} con media 𝜇0 antes del cambio y 𝜇1 después. Se define la suma 

acumulada de log-verosimilitudes: 

𝑆𝑘 =∑ln(
𝑃𝜇1(𝑥𝑖)

𝑃𝜇0(𝑥𝑖)
)

𝑘

𝑖=1

. 

La estadística de decisión 𝑔𝑘 = 𝑆𝑘 − min
1≤𝑖≤𝑘

𝑆𝑖. Se detecta un cambio en el tiempo 𝑡 si: 

 

𝑔𝑡 = max
1≤𝑘≤𝑡

(𝑆𝑡 − 𝑆𝑘) > ℎ, 

donde ℎ es un umbral de control. El estimador del punto de cambio es 𝜏̂ = 𝑎𝑟𝑔 min
1≤𝑘≤𝑡

𝑆𝑘   (Page, 

1954; Hinkley, 1971). Para una simple diferencia de medias 𝜇0 vs.  𝜇1,  esto se reduce a monitorear 

𝑆𝑘 = ∑ (𝑥𝑖 − 𝜇0 −
𝛿
2⁄ )

𝑘
𝑖=1 , donde 𝛿 es el cambio mínimo a detectar. 

 

𝑴𝟒) Técnicas de ajuste local por mínimos cuadrados  

Autores y desarrollo clásico: Es un enfoque heurístico sólido, frecuentemente usado como paso 

previo en algoritmos de interpolación adaptativa (Loader, 1999). Se basa en la comparación de 

modelos locales ajustados a los datos. 



ASCE MAGAZINE                                                        ISSN: 3073-1178 

 
 

    Esta obra está bajo una Licencia Creative Commons Atribución-No Comercial-Compartir Igual 4.0 Internacional  
 

https://magazineasce.com/ 

 

Estructura y requisitos: Requiere datos dispersos o en grilla. Se basa en la definición de una ventana 

local o un conjunto de vecinos más cercanos alrededor de cada punto de evaluación. 

 

Proceso y funcionalidad: 

▪ Para un punto dado, se ajustan dos modelos de regresión local (lineal o cuadrática) usando 

mínimos cuadrados ponderados; uno con todos los datos en la ventana, y otro excluyendo los 

datos que están del otro lado de un candidato a frontera. 

▪ Se calcula un indicador de salto, como la diferencia en los residuos de ambos ajustes, o la 

diferencia entre los valores predichos por dos modelos locales centrados a cada lado del punto. 

▪ Un pico en este indicador, por encima de un umbral estadístico (relacionado con el nivel de 

ruido), señala una probable discontinuidad. 

 

Resultados: Produce un mapa de “probabilidad” o “indicador de fuerza” de salto en la ubicación 

de los datos. Es computacionalmente intensivo pero muy adaptable a datos no estructurados y 

permite distinguir entre un gradiente pronunciado y un verdadero salto. 

 

Ventajas: 

 

▪ Flexibilidad y simplicidad conceptual: Fácil de entender e implementar para datos en cualquier 

dimensión y estructura (regulares, dispersos). 

▪ No paramétrico: No asume una forma global para los datos, solo suavidad local fuera de las 

discontinuidades. 

▪ Adaptabilidad: Permite definir la vecindad de forma adaptativa (𝑘 −vecinos más cercanos, 

ventanas de ancho fijo). 

 

Desventajas: 

▪ Elección de parámetros crítica: El tamaño de la ventana o el número de vecinos (𝑘) y el umbral 

de detección afectan enormemente los resultados. Una ventana grande suaviza los saltos; una 

pequeña es ruidosa. 

▪ Costo computacional: Ajustar un modelo de regresión local para cada punto o vecindad es 

intensivo, especialmente para grandes conjuntos de datos. 

▪ Detección ambigua en bordes suaves: Puede tener dificultades para distinguir entre un gradiente 

muy pronunciado continuo y un verdadero salto discontinuo. 

 

Formulación matemática (Indicador de Salto Basado en Residuos): Para un punto 𝒙0 en una 

superficie 2D con datos {(𝒙𝑖, 𝑧𝑖)} se definen dos vecindades: 𝑁𝐿 y 𝑁𝑅, a izquierda y derecha de un 

candidato a línea de discontinuidad que pasa por 𝒙0. Se ajustan dos planos locales por mínimos 

cuadrados ponderados: 
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arg min
𝛼𝐿∈𝛽𝐿

∑ 𝑤𝑖(𝑧𝑖 − 𝛼𝐿 − 𝛽𝐿(𝒙𝑖 − 𝒙𝟎))
2

𝑥𝑖∈𝑁𝐿

, 

arg min
𝛼𝑅∈𝛽𝑅

∑ 𝑤𝑖(𝑧𝑖 − 𝛼𝑅 − 𝛽𝐿(𝒙𝑖 − 𝒙𝟎))
2

𝑥𝑖∈𝑁𝑅

, 

donde 𝑤𝑖 son pesos (por ejemplo, función de distancia). El indicador de salto en 𝒙0  se define como 

la diferencia en las alturas predichas: 

𝐽(𝒙0) = |𝛼̂𝐿 − 𝛼̂𝑅| 

 

Un pico de 𝐽(𝒙0) sobre un umbral 𝜀 (derivado del error de ajuste o nivel de ruido) indica una 

discontinuidad (Loader, 1999). La dirección de la línea de discontinuidad se infiere de la partición 

𝑁𝐿 , 𝑁𝑅  que maximiza 𝐽(𝒙0). 

 

Métodos clásicos para aproximar superficies discontinuas  

Dentro del paradigma clásico, la aproximación de superficies con discontinuidades (saltos 

abruptos, bordes) o no regularidades ha sido abordada mediante métodos que relajan los requisitos 

de suavidad de las técnicas tradicionales de interpolación. A continuación, se detallan tres métodos 

fundamentales, su estructura, requisitos, procesos, funcionalidad y resultados típicos. 

 

𝑴𝟏) Método de Elementos Finitos de Galerkin Discontinuos (DG-FEM, por sus siglas en inglés) 

Autores y desarrollo clásico: Aunque sus orígenes conceptuales se remontan a los años 70 (Reed 

& Hill, 1973, para ecuaciones de transporte neutrónico), su desarrollo y análisis teórico como 

método sólido para problemas hiperbólicos (que naturalmente desarrollan discontinuidades como 

ondas de choque) fue impulsado significativamente por Cockburn y Shu (1998) en una serie de 

trabajos a finales de los 80 y 90. 

 

Estructura y requisitos: Este método combina ideas del método de elementos finitos y los métodos 

de volúmenes finitos. El dominio se discretiza en elementos (por ejemplo, triángulos, 

cuadriláteros). La aproximación de la solución es local a cada elemento, donde se utilizan 

polinomios de cierto grado, y no se exige continuidad en las interfaces entre elementos. 

 

Proceso y funcionalidad: La formulación se basa en una forma débil de las ecuaciones gobernantes, 

aplicada elemento por elemento. La conexión entre soluciones discontinuas de elementos 

adyacentes se logra mediante un término de flujo numérico (por ejemplo, el flujo de Godunov, Lax-

Friedrichs local), el cual determina de manera estable el valor de la función en los bordes. Se 

incorporan también términos de penalización para controlar los “saltos”. 

 

Resultados: DG-FEM logra aproximaciones de alto orden precisión en regiones suaves, mientras 

que captura discontinuidades de manera estable y localizada, sin producir oscilaciones globales 

(espurias). Es particularmente funcional para leyes de conservación hiperbólicas. 

 

Ventajas: 
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▪ Alto orden y localidad: Proporciona aproximaciones de alta precisión (alto orden polinómico) 

en regiones suaves. La construcción es local por elemento, facilitando el paralelismo y el 

refinamiento adaptativo (hp-adaptatividad) (Cockburn & Shu, 1998). 

▪ Estabilidad para hiperbólicos: Diseñado intrínsecamente para problemas de convección 

dominante e hiperbólicos, captura ondas de choque (discontinuidades fuertes) de manera estable 

sin oscilaciones numéricas destructivas, gracias al uso sólido de flujos numéricos. 

▪ Conservación local: Las leyes de conservación se cumplen localmente en cada elemento, una 

propiedad física crucial en dinámica de fluidos. 

▪ Manejabilidad de geometrías: Puede emplear mallas no estructuradas con elementos complejos. 

 

Desventajas: 

▪ Costo computacional: Tiene un mayor costo en memoria y operaciones en comparación con 

métodos continuos de Galerkin, debido al mayor número de grados de libertad (diferentes por 

elemento) y a la necesidad de resolver términos de flujo en las caras (Hesthaven & Warburton, 

2008). 

▪ Complejidad de implementación: La formulación, especialmente el manejo de condiciones de 

contorno y flujos numéricos, es más compleja que la de los elementos finitos continuos estándar. 

▪ Selección del flujo: La precisión y estabilidad dependen de la elección adecuada del flujo 

numérico, lo que puede requerir conocimiento específico del problema. 

 

Formulaciones matemáticas del método: 

A continuación, se presentan las formulaciones esenciales que definen la estructura del método. 

Específicamente, la formulación se plantea para un problema modelo de ley de conservación 

escalar. 

 

Problema modelo: Se busca 𝑢(𝒙, 𝑡) tal que 
𝜕𝑢

𝜕𝑡
+∇ ∙ 𝒇(𝑢) = 0 en Ω, 

 

donde 𝒇(𝑢) es el flujo. 

 

Formulación débil por elementos:  

a) Sea 𝒯ℎ una triangulación de Ω. En cada elemento 𝐾 ∈ 𝒯ℎ, se busca una aproximación 𝑢ℎ ∈

𝑉ℎ(𝐾), donde 𝑉ℎ es un espacio polinomial de grado 𝑘. 

 

b) Se multiplica la ecuación por una función de prueba 𝑣ℎ ∈ 𝑉ℎ, se integra en 𝐾, y se aplica el 

teorema de la divergencia:  

 

∫
𝜕𝑢ℎ
𝜕𝑡

𝑣ℎ
𝐾

𝑑𝒙 −∫ 𝒇(𝑢ℎ) ∙ 𝑣ℎ
𝐾

𝑑𝒙 + ∫ 𝒇̂(𝑢ℎ) ∙ 𝒏𝐾𝑣ℎ
𝜕𝐾

𝑑𝑆 = 0, 

para toda 𝑣ℎ ∈ 𝑉ℎ. 
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c) Componente clave - flujo numérico: 𝒇̂(𝑢ℎ) es el flujo numérico, una función definida en las 

caras 𝜕𝐾 que resuelve la inconsistencia de tener dos valores de 𝑢ℎ (uno de cada elemento 

adyacente). Para una cara compartida por los elementos 𝐾+ y 𝐾−, depende de ambos valores: 

 

𝒇̂(𝑢ℎ) = 𝒇̂(𝑢ℎ
−, 𝑢ℎ

+, 𝒏). 

 

Un ejemplo clásico es el flujo de Lax-Friedrichs local: 

 

𝒇̂(𝑎, 𝑏, 𝒏) =
1

2
(𝒇(𝑎) − 𝒇(𝑏)) ∙ 𝒏 −

1

2
𝜆𝑚á𝑥(𝑏 − 𝑎), 

donde 𝜆𝑚á𝑥  es una cota local de la velocidad de propagación. Este término estabiliza la solución y 

permite capturar discontinuidades (Cockburn & Shu, 1998). 

 

 

𝑴𝟐) Métodos de Malla Libre Basados en División de la Función de Base  

Autores y desarrollo clásico: El marco teórico unificador, que conecta directamente el 

enriquecimiento local con la representación eficiente de discontinuidades y su teoría de 

convergencia, fue introducido por Melenk y Babuška (1996) bajo el nombre de Método de la 

Partición de la Unidad (PUM). Este marco establece que, al extender un espacio de aproximación 

convencional (como el de Elementos Finitos) mediante la incorporación local de funciones que 

capturan el comportamiento singular o discontinuo de la solución, se puede lograr una convergencia 

óptima incluso cuando la malla no se alinea con las singularidades. Su realización más conocida en 

mecánica computacional es el Método de Elementos Finitos Generalizados (GFEM), cuyo 

desarrollo práctico, análisis numérico detallado de la convergencia para problemas con 

discontinuidades, y diseminación fueron impulsados decisivamente por los trabajos de Strouboulis, 

Babuška y Copps (2000, 2001, 2003). 

 

Estructura y requisitos: Extiende el método de elementos finitos clásico al permitir que el espacio 

local de aproximación en cada elemento sea enriquecido con funciones conocidas que describen el 

comportamiento local de la solución, como discontinuidades o singularidades. 

 

Proceso y funcionalidad: Sobre una malla de elementos finitos convencional, se utiliza el Método 

de Partición de la Unidad (PUM, por sus siglas en inglés). Luego, esta base se enriquece localmente, 

solo en los elementos cortados por una discontinuidad conocida, con una función que incorpore un 

salto (por ejemplo, una función de Heaviside). La aproximación global es una combinación de las 

funciones de formas nodales estándar y las enriquecedoras. 

 

Resultados: GFEM/PUM permite modelar discontinuidades internas (interfases, grietas) de manera 

precisa sin necesidad de alinear la malla con la discontinuidad. Captura el salto de manera exacta 

si la función enriquecedora lo describe correctamente, mejorando drásticamente la precisión y la 

tasa de convergencia frente a los FEM estándar. 
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Ventajas: 

▪ Independencia de la malla: La principal fortaleza es su capacidad para modelar discontinuidades 

internas (grietas, interfases) sin necesidad de remallar o alinear la malla con la geometría de la 

discontinuidad (Melenk & Babuška, 1996). 

▪ Precisión mejorada: El enriquecimiento local permite incorporar conocimiento a priori de la 

solución (como la función de Heaviside para un salto), logrando tasas de convergencia óptimas 

y una representación precisa de la singularidad. 

▪ Flexibilidad: El concepto de enriquecimiento es general y puede aplicarse a diferentes tipos de 

singularidades (puntas de grieta, capas límite). 

 

Desventajas: 

▪ Problemas de mal condicionamiento: La incorporación de funciones enriquecedoras 

(especialmente si son casi linealmente dependientes de la base estándar o entre sí en el soporte) 

genera matrices de rigidez mal condicionadas, lo que dificulta la solución numérica (Babus̆ka 

& Banerjee, 2012). 

▪ Conocimiento a priori requerido: Para enriquecer eficazmente, se necesita conocer o poder 

predecir la ubicación y naturaleza de la discontinuidad, lo que no siempre es trivial. 

▪ Integración numérica compleja: La evaluación de las matrices requiere una integración precisa 

sobre elementos cortados por la discontinuidad, necesitando a menudo subdivisiones especiales 

o técnicas de integración elevada. 

 

Formulaciones matemáticas del método: 

A continuación, se presentan las formulaciones esenciales que definen la estructura del método. 

Específicamente, la formulación se describe para un problema de Poisson con una discontinuidad 

de salto interno a lo largo de una interfaz Γ. 

 

Espacio de aproximación enriquecido: La solución aproximada 𝑢ℎ(𝒙) se construye como: 

 

𝑢ℎ(𝒙) =∑𝑁𝑖(𝒙)𝑢𝑖
i∈I⏟      
FEM Estándar

+∑𝑁𝑗[𝐻(𝒙) − 𝐻(𝒙𝑗)]𝑎𝑗
𝑗∈𝐼𝛤

,

⏟                
Enriquecimiento para el salto

 

donde,  

𝑁𝑖(𝒙) son las funciones de forma de FEM clásico (forman la Partición de la Unidad). 

𝐼 es el conjunto total de nodos. 

𝐼Γ ⊂ 𝐼 es el conjunto de nodos cuyo soporte es cortado por la interfaz Γ. 

𝐻(𝒙) es la función de Heaviside asociada a Γ:𝐻(𝑥) = +1 en un lado y 𝐻(𝒙) = 0 en el otro. 

 

𝑢𝑖 y 𝑎𝑗  son los grados de libertad estándar y enriquecidos, respectivamente. Restar 𝐻(𝒙𝒋) evita 

problemas de linealidad (Melenk & Babuška, 1996). 

Formulación débil: La formulación variacional (por ejemplo, para Poisson) se arma sustituyendo 
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𝑢ℎ y funciones de prueba construidas de manera análoga en la forma bilineal y lineal 

correspondiente. El enriquecimiento permite representar el salto [𝑢]|Γ. 

 

𝑴𝟑)  Interpolación y Aproximación por Splines de Tensión Variable  

Autores y desarrollo clásico: Los splines de placa delgada (Duchon, 1976) son un método de 

suavizado óptimo para datos irregulares, pero suavizan excesivamente las discontinuidades. Para 

controlar esto, se desarrollaron métodos que adaptan localmente el parámetro de suavizado. Un 

enfoque clásico e influyente es el de los splines con tensión introducidos por Schweikert (1966) y 

luego desarrollados para superficies por Franke (1985) entre otros. 

 

Estructura y requisitos: Parten de la minimización de un funcional de energía que balancea un 

término de ajuste a los datos y un término de “energía de curvatura” que penaliza la ondulación. 

La innovación está en modificar el operador de suavizado (de Laplaciano a Helmholtz) 

introduciendo un parámetro de tensión (𝜑). Para capturar discontinuidades, este parámetro se hace 

local y variable. 

 

Proceso y funcionalidad: El proceso implica dos pasos clave: 𝑃1) Detección de regiones de posible 

discontinuidad (mediante análisis de gradientes o residuos). 𝑃2) Ajuste local del parámetro de 

tensión 𝜑(𝑥, 𝑦): en regiones suaves, 𝜑 es pequeño, permitiendo flexibilidad; cerca de 

discontinuidades detectadas, 𝜑 se incrementa fuertemente, tensando la superficie para evitar el 

sobre-suavizado del salto. 

 

Resultados: Este método produce una superficie que es continua en valor (𝐶0) pero puede tener 

cambios bruscos en el gradiente. Permite una transición más aguda en los bordes que los splines de 

suavizado global, aunque la localización exacta y magnitud del salto dependen críticamente del 

esquema de detección y ajuste del parámetro. 

 

Ventajas: 

▪ Aplicabilidad a datos dispersos: Es un método muy adecuado para la 

interpolación/aproximación de datos dispersos e irregulares, común en geociencias y cartografía 

(Franke, 1985). 

▪ Control adaptativo del suavizado: Permite un control local explícito del comportamiento de la 

superficie, relajando el suavizado donde los datos varían suavemente y forzando un 

comportamiento más rígido (tensión) cerca de saltos detectados, preservando así pendientes 

pronunciadas. 

▪ Continuidad garantizada: Produce una superficie globalmente continua (𝐶0), lo cual es deseable 

en ciertas visualizaciones y evita huecos. 

 

Desventajas: 

▪ Dependencia crítica de parámetros: La calidad del resultado depende fuertemente del 

algoritmo de detección de discontinuidades y de la función que mapea los 
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gradientes/residuos a los valores del parámetro de tensión. Es sensible y heurístico. 

▪ Suavizado de saltos: A diferencia de GFEM o DG-FEM, no reproduce saltos exactos. En el 

mejor caso, produce una transición muy pronunciada pero continua, que puede difuminar 

la discontinuidad real (Billings, 2013). 

▪ Falta de base teórica fuerte: Para configuraciones generales de datos, suele ser más un 

método práctico que uno con garantías teóricas sólidas de convergencia hacia la función 

discontinua subyacente. 

 

Formulaciones matemáticas del método: 

A continuación, se presentan las formulaciones esenciales que definen la estructura del método. 

Específicamente, la formulación parte del problema de minimización de un funcional de energía. 

 

Funcional de energía generalizado: Se busca la función 𝑠(𝒙) que minimice: 

 

𝐽(𝑠) =∑𝑤𝑖|𝑧𝑖 − 𝑠(𝒙𝒊)|
2

𝑁

𝑖=!

+ ∫ 𝜌(𝒙)Φ(∇𝑠, ∇2

Ω

𝑠)𝑑𝒙, 

 

donde el primer término mide el ajuste a los datos {(𝒙𝑖, 𝑧𝑖)}𝑖=1
𝑁  y el segundo es un regularizador 

que penaliza la oscilación. 

 

Forma del regularizador para tensión variable: Para splines de tensión, Φ suele involucrar derivadas 

primeras. Un modelo común (en 1D para claridad, extendible a 2D) es: 

 

𝐽(𝑠) =∑𝑤𝑖(𝑧𝑖 − 𝑠(𝑥𝑖))
2

𝑁

𝑖=!

+ ∫ 𝜏(𝑥)(𝑠′′(𝑥))
2
+

Ω

𝜎(𝑥)(𝑠′(𝑥))
2
𝑑𝑥. 

 

En 2D, el término de tensión a menudo se formula con el uso del operador de Helmholtz. La idea 

clave es que 𝜎(𝒙) (o 𝜏(𝒙)) no es constante, sino una función de tensión local. 

 

Función de tensión local: 𝜎(𝒙) se define en función del gradiente o residuo de un ajuste preliminar. 

Por ejemplo: 

𝜎(𝒙) = 𝛼𝑒(𝛽||∇𝑠0(𝒙)||
2), 

donde 𝑠0 es un spline de suavizado inicial. En regiones con alto gradiente (posible discontinuidad),  

𝜎(𝒙) se hace grande, donde se penaliza fuertemente las pendientes grandes y se tensa la superficie 

para que no se suavice demasiado (Franke, 1985; Billings, 2013). La minimización de 𝐽(𝑠) conduce 

a una Ecuación en Derivadas Parciales (EDP) elíptica con coeficientes variables. 

 

 

Discusión 
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En esta sección se expone la discusión de los resultados obtenidos en el apartado anterior.  Se 

comienza presentando el análisis de los métodos de detección y, después los de aproximación para 

superficies discontinuas. Específicamente, el presente estudio revisó métodos clásicos 

fundamentales para dos tareas críticas y secuenciales en el tratamiento de superficies discontinuas: 

detección/localización y aproximación. El análisis revela un panorama donde la elección del método 

no es única, sino que está dictada por la naturaleza de los datos.  

Respecto a la detección, los métodos analizados ofrecen filosofías complementarias. Los basados en 

wavelets (Método de Mallat-Zhong) proporcionan un marco matemático elegante y multiescala, 

ideal para señales 1D o perfiles donde la localización precisa y la caracterización del tipo de 

singularidad son primordiales (Mallat & Zhong, 1992). Sin embargo, su extensión a superficies 

2D/3D complejas y su sensibilidad a parámetros como la wavelet madre pueden limitar su 

aplicabilidad general. En contraste, los detectores difusivos (Método de Canny) ofrecen una 

herramienta sólida y algorítmicamente madura para datos estructurados (imágenes), con prioridad 

en la continuidad de los bordes y la supresión del ruido, a costa de difuminar la localización exacta 

(Canny, 1986).  

Por otro lado, los métodos estadísticos abordan el problema desde un paradigma diferente, 

modelando la discontinuidad como un cambio de régimen. Su fortaleza reside en la detección 

probabilística y la capacidad de identificar cambios en propiedades estadísticas más allá del valor 

medio, siendo robustos al ruido estocástico, aunque requieren asumir un modelo de distribución para 

los datos (Page, 1954; Hinkley, 1971). Finalmente, las técnicas de ajuste local (mínimos cuadrados) 

destacan por su flexibilidad y adaptabilidad a datos no estructurados. Esto actúa como un detector 

heurístico efectivo cuando no se dispone de un modelo estadístico claro, aunque su desempeño 

depende críticamente de la elección de los parámetros de la vecindad y del umbral (Loader, 1999). 

En síntesis, no existe un detector universal: la wavelet es preferible para un análisis multiescala 

profundo, Canny para procesamiento de imágenes ruidosas, el método estadístico para datos con un 

modelo conocido y el ajuste local para una primera exploración flexible. En otras palabras, estos 

métodos son ideales para datos donde el modelo estadístico es conocido, pero su aplicabilidad puede 

reducirse en contextos exploratorios. 

En cuanto a la aproximación, los métodos revisados responden a la disyuntiva entre fidelidad a la 

física del problema y flexibilidad geométrica. Los Elementos Finitos de Galerkin Discontinuos (DG-

FEM) se erigen como la solución intrínseca para problemas gobernados por leyes de conservación 

hiperbólicas, donde la discontinuidad (por ejemplo, un choque) es parte de la solución débil. Su 

fortaleza radica en la conservación local, el alto orden de precisión y la estabilidad probada, pagando 

el precio de una mayor complejidad computacional y de implementación (Cockburn & Shu, 1998). 

Cuando la discontinuidad es una interfaz geométrica fija o una grieta dentro de un dominio, los 

Métodos de Partición de la Unidad/GFEM ofrecen una solución elegante al desacoplar la malla de 

la geometría de la discontinuidad. Su capacidad de enriquecimiento local con funciones conocidas 

(Heaviside) permite una representación exacta del salto, pero introduce el severo desafío numérico 

del mal condicionamiento de las matrices (Melenk & Babuška, 1996; Babus̆ka & Banerjee, 2012).  
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Para problemas de aproximación pura de datos dispersos y ruidosos donde la discontinuidad es un 

gradiente extremadamente pronunciado, los splines de tensión variable ofrecen un control práctico 

y local del suavizado. No obstante, su naturaleza heurística y su incapacidad para representar saltos 

exactos los sitúan como un método de regularización adaptativa más que de reconstrucción precisa 

de discontinuidades (Franke, 1985; Billings, 2013). 

La interacción entre detección y aproximación es simbiótica y define un flujo de trabajo típico. 

Métodos de detección como los basados en mínimos cuadrados locales o en wavelets pueden 

alimentar parámetros clave para los métodos de aproximación: identificar la ubicación de la interfaz 

para el enriquecimiento en GFEM, o guiar la función de tensión local 𝜎(𝒙) en los splines. A su vez, 

un paso de aproximación preliminar (como un spline de suavizado global) puede proporcionar los 

residuos o gradientes necesarios para inicializar un detector estadístico o por wavelets. 

Finalmente, se observa que la aproximación de SD es un campo inherentemente híbrido. Los 

métodos más eficaces suelen combinar una etapa de detección sólida, adaptada a la estadística y 

geometría de los datos, con una etapa de aproximación cuyo núcleo matemático esté alineado con la 

física subyacente que genera la discontinuidad (conservación, fractura, cambio de régimen). Los 

desarrollos futuros continúan en la línea de mejorar la solidez y eficiencia de esta integración, 

automatizando la selección de parámetros y extendiendo estos marcos clásicos a volúmenes de datos 

más grandes y complejos. 

Para finalizar este apartado, se resume la propuesta del Algoritmo Teórico General AIDA-FD 

(Algoritmo Integrado de Detección y Aproximación Adaptativa para Funciones con 

Discontinuidades), una guía metodológica sintetizada a partir de la revisión de los métodos clásicos. 

Su objetivo es guiar de manera sistemática y sólida la aproximación de funciones no regulares a 

partir de datos, integrando de manera cíclica la detección, la selección adaptativa del método y la 

validación iterativa. 

La estructura del algoritmo se organiza en cinco fases secuenciales: 

𝑃1) Preprocesamiento y análisis exploratorio: Normalización de datos y obtención de una 

aproximación de suavizado global para generar un campo de referencia. 

𝑃2) Detección y caracterización: Cálculo de un campo indicador de discontinuidad (mediante 

técnicas como ondículas, análisis de gradientes o residuos) y extracción de las interfaces candidatas 

(Γ0).  

𝑃3) Selección y aplicación adaptativa: Clasificación del dominio según las interfaces detectadas y 

selección del método de aproximación más adecuado (GFEM/PUM, DG-FEM o splines adaptativos) 

en función de la naturaleza de la discontinuidad y los datos. 

𝑃4) Validación y refinamiento iterativo (Opcional): Análisis de residuos para corregir la localización 

de discontinuidades y refinar la aproximación en un ciclo de realimentación. 

𝑃5) Salida y cuantificación de incertidumbre: Entrega de la función aproximada final, la geometría 
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de las discontinuidades y un mapa de confianza que combina densidad de datos, residuos y 

proximidad a las discontinuidades. 

En esencia, el marco AIDA-FD subraya la importancia crítica de combinar herramientas de 

detección específicas con esquemas numéricos diseñados para manejar discontinuidades. Al unificar 

la identificación de la singularidad, la aplicación inteligente del método numérico y el control de 

calidad iterativo, este algoritmo proporciona una guía adaptable para abordar el complejo problema 

de la aproximación de superficies discontinuas, sintetizando las lecciones fundamentales de la 

literatura revisada. 

Conclusiones 

El problema de aproximación de funciones (curvas y/o superficies) regulares tanto para funciones 

explícitas como paramétricas, ha sido por muchos años las referencias estándar para realizar 

aproximaciones de funciones no regulares. En la primera temática, existen muchas fuentes 

bibliográficas que los abordan y documentan en la literatura científica, por lo general, desde 

perspectivas de técnicas especializadas como lo son las de interpolación y ajustes de funciones 

regulares. Mientras que, en la segunda línea de investigación, los procesos básicos para aproximar 

funciones no regulares yacen en los métodos de aproximación de funciones regulares, puesto que 

suelen ser adaptaciones de estos últimos tomando en cuenta el conjunto de discontinuidad.  

 

En ambas situaciones, aun es un tema novedoso e interesante que se encuentra frecuentemente en 

varios campos de aplicaciones científicas. Particularmente, debido a la presencia de fuertes y rápidas 

variaciones en el conjunto de datos conocidos, el interés se centra en innovar con respecto a: la 

obtención de buenos, mejorados y precisos resultados en el caso de ajuste de curvas y superficies no 

regulares; calidad de la aproximación, dificultad de la implementación y el tiempo de ejecución; 

asimismo, como la consideración de que el paso de detección y el de aproximación forman parte del 

mismo problema; entre otros aspectos. Pero esencialmente, en este tipo de funciones no regulares es 

imprescindible evitar posibilidad de que se produzca el fenómeno de Gibss. 

 

En cuanto a los objetivos propuestos en la presente investigación, sobre analizar los métodos de 

aproximación de funciones regulares y no regulares, para identificar las técnicas y pasos, así como, 

organizar la información obtenida en un algoritmo general, se puede inferir que, la aproximación de 

funciones (curvas y/o superficies) no regulares bajo la suposición de tener un conjunto de dados 

, consiste en: 𝑃1) Detección del conjunto de discontinuidad y 𝑃2) Aproximación de la función 

observada; ambos pasos, pueden ser considerados como parte del mismo problema de forma 

interdependiente o, independiente. 

 

En cuanto a algunos de los aspectos elementales representativos se tiene que, los requerimientos y 

procesamientos pueden variar dependiendo del punto de partida (𝑃1 o 𝑃2), por ejemplo, si se parte 

del paso de detección del conjunto de discontinuidades, se pueden requerir de datos dispersos o 

regularmente distribuidos; mientras que, primero, si se comienza directamente en el paso de 

aproximación de la función observada, es un requisito indispensable solicitar la localización del 

conjunto de discontinuidad. Al respecto, muchos de los métodos existentes que sólo consideran esta 
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segunda parte del problema de aproximación mencionado, como requerimiento para su 

implementación solicitan información sobre las grandes variaciones en el conjunto de datos. En 

relación con esto último, se resalta que cuando en el problema de aproximación los dos pasos se 

tratan de modo independiente, no siempre resulta fácil adaptar y acoplar los resultados del primero 

de ellos (𝑃1) con las condiciones de entrada del segundo (𝑃2), puesto que, no necesariamente son 

compatibles los resultados de las investigaciones que los consideran por separados.  

 

Asimismo, la funcionalidad y resultados dependen del paso aplicado, por ejemplo, si solo se utiliza 

𝑃1 la prioridad se encuentra en la localización del conjunto de discontinuidades; mientras que, si se 

aplica únicamente 𝑃2 el interés se encuentra en la obtención de una aproximante regular a partir del 

conocimiento del conjunto de discontinuidad. Empero, si la idea es obtener el esquema completo de 

aproximación se deben aplicar ambos pasos consecutivamente. Segundo, en cuanto a las técnicas 

más sobresalientes que contemplan los métodos de aproximación de funciones no regulares se 

encontraron: Método de Elementos Finitos de Galerkin Discontinuos, Métodos de Malla Libre 

Basados en División de la Función de Base e Interpolación y Aproximación por Splines de Tensión 

Variable. 

 

Tercerto, a modo de ilustración se presentó un algoritmo teórico que guía el proceso de aproximación 

de funciones no regulares. En este se presentó el esquema de forma general e incremental que 

contempla el proceso de aproximación de superficies discontinuas, donde se han puntualizado de 

manera detallada los elementos teóricos involucrados y que son la base para este tipo de 

aproximación.  

 

En términos generales, la investigación confirmo la importancia de considerar que el paso de 

detección y el de aproximación forman parte del mismo problema, puesto que, no siempre son 

compatibles; además, este trabajo permitió obtener un panorama tanto local como global con 

respecto a la estructura del algoritmo de aproximación de funciones discontinuas, lo que puede servir 

de base para diseñar nuevos métodos convenientes a partir de la selección de herramientas 

disponibles en la literatura y, utilizarlos localmente en el algoritmo presentado en esta investigación, 

por ejemplo intercambiar los métodos de detección o de aproximación; asimismo, ayudará en la 

trayectoria a seguir para una posible implementación en algún lenguaje de programación de 

preferencia, para ser considerado en aplicaciones de problemas de aproximaciones reales; del mismo 

modo, contribuirá en el estudio teórico con miras a futuras aplicaciones.  

 

Finalmente, el campo aplicado como las Geociencias, presentan cada día nuevos desafíos para la 

línea de investigación de aproximación de funciones (curvas y/o superficies) tanto regulares como 

no regulares, principalmente, en cuanto estructura, requisitos, procesos, funcionalidad y resultados. 

Es así que, el presente trabajo procura inspirar a los investigadores noveles a partir de un panorama 

de los métodos de aproximación de funciones no regulares, para involucrarse en la técnicas 

necesarias para la localización del conjunto de discontinuidad, así como, la construcción de 

funciones aproximantes; particularmente, en el diseño de métodos con una perspectiva integradora 
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los dos pasos anteriores, los cuales son necesarios para un esquema completo de aproximación de 

superficies discontinuas. Esto con la finalidad de cristalizar nuevos avances de investigación tanto 

de carácter teórico como prácticos a partir de posibles aplicaciones futuras. Con respecto a esto 

último, una propuesta de construcción de un espacio de aproximación y un método para superficies 

discontinuas se proponen a futuro. 
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