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Resumen

La aproximacion de funciones (superficies) que presentan fuertes (o grandes) variaciones o varian
rapidamente (funciones no regulares) a partir de un conjunto de datos conocidos (dispersos y/o
regularmente distribuidos) de tipo Lagrange, (&}, f (¢ j))?’=1 de RZ X R,con N € N = {1,2,...}, para
una funcion f (aproximada) definida explicitamente por z = f(x,y), es un problema concreto que
posee un importante nimero de aplicaciones, tales como: aproximacion de frentes maritimos a partir
de datos batimétricos; aproximacion de superficies con fallas en el campo de las Geociencias; entre
otras. Dentro de este contexto, el proposito del estudio fue revisar y presentar los detalles, en el
sentido de: estructura, requisitos, procesos, funcionalidad y resultados; de algunos de los métodos
de aproximacion de funciones no regulares, con hincapié en aquellos utiles para Superficies
Discontinuas (SD) las cuales son originadas por la variacion rapida en el conjunto de datos. En este
sentido, la investigacion fue abordada bajo un enfoque cualitativo no iterativo, de tipo descriptivo,
con diseno de investigacion documental; fundamentada en documentos (libros y articulos) de
caracter cientificos relacionados con los métodos de aproximacion de superficies explicitas a partir
de un conjunto de datos que presentan fuertes variaciones. Como resultados, se obtuvo un panorama
de los procesos generales utilizados en la aplicacion de algunos de los métodos de aproximacion mas
notables para superficies discontinuas. En conclusion, conocer los detalles de ciertos métodos
estandar para aproximar superficies discontinuas permite elegir el enfoque més adecuado, ya sea

aplicando los existentes o disefiando metodologias propias para optimizar los resultados esperados.

Palabras clave: Funciones no regulares, Aproximacion, Métodos de aproximacion, Datos de

variacion rapida, Aproximacion de superficies discontinuas.

Abstract

Esta obra esta bajo una Licencia Creative Commons Atribucion-No Comercial-Compartir Igual 4.0 Internacional

https://magazineasce.com/



LY

)
*Lg ASCE MAGAZINE ISSN: 3073-1178

wnt

’&((‘«(&

S

The approximation of functions (surfaces) that present strong (or large) variations or vary rapidly
(non-regular functions) from a set of data known (sparse and/or regularly distributed) of Lagrange-
type, (&, f(fj))?':l de R? xR, with N € N={1,2,..}, for an explicitly defined function f
(approximate) for z = f(x,y), is a specific problem that has a significant number of applications,
such as: approximation of maritime fronts from bathymetric data; approximation of surfaces with
faults in the field of Geosciences; among other. Within this context, the purpose of the study is to
review and present the details, in the sense of: structure, requirements, processes, functionality and
results; of some of the approximation methods of non-regular functions, with emphasis on those
useful for discontinuous surfaces which are caused by rapid variation in the data set. In this sense,
the research was approached under a non-iterative qualitative approach, of a descriptive type, with a
documentary research design; based on documents (books and articles) of a scientific nature related
to the approximation methods of explicit surfaces from a set of data that present strong variations.
As aresult, an overview of the general processes used in the application of some of the most notable
approximation methods for discontinuous surfaces was obtained. In conclusion, knowing the details
of certain standard methods for approximating discontinuous surfaces allows you to choose the most
appropriate approach, either by applying existing ones or by designing your own methodologies to

optimize the expected results.

Keywords: Non-regular functions, Approximation, Approximation methods, Rapidly varying data,

Approximation of discontinuous surfaces.

Introduccion
En muchas de las aplicaciones en ciertos campos de la matematica y areas afines, se encuentran con
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el problema de aproximacion de funciones (superficies) a partir de un conjunto de datos (o muestras)
conocidos de tipo Lagrange, a saber, (Ej,f(fj))?;l de RZX R, con NeN={1,2,..},
regularmente distribuidos o dispersos que presentan fuertes o grandes variaciones (o varian
rapidamente), donde f es una funcion (llamada aproximada) definida explicitamente por z =
f(x,¥), por lo menos, en un conjunto de puntos (o nodos), X" = {§; € R* : j = 1,2,...,N}, en un
dominio ) no vacio, abierto, convexo y acotado de dos dimensiones. Especificamente, el problema
de construccidon de una funcion s (respectivamente, curva y/o superficie) regular (que se llamara,
aproximante) se realiza a partir de un conjunto de datos, aparece en muchos problemas de interés
para la geologia, geofisica, oceanografia, las ciencias e ingenierias, entre otras areas y disciplinas;
en los cuales, es comun tratar con un conjunto de datos que muestran estructuras complicadas (e.g.,
como son las fallas), cristalizadas por la presencia de fuertes o grandes variaciones.

Esto ocurre como aplicacion en problemas de construccion y/o aproximacion de: frentes maritimos
a partir de datos batimétricos; superficies con fallas en el campo de las Geociencias, entre otras. Por
ejemplo, cuando se describe la topografia de las superficies del fondo marino (Fosa de Tonga, Fosa
de Japon, Fosa de Kermadec, Fosa de las Marianas, entre otras), a partir de datos de batimetria (Gout
& Ramicre, 2003); asimismo, la obtencion de la topografia necesaria para el pre-procesamiento de
datos que se utilizan en la formulacién de modelos de derrame de lava; presencia de estructuras
geologicas con fallas; ademas de, cordilleras, volcanes, islas o la forma de entidades geoldgicas; asi
como también, cuando se trata de la caracterizacion y modelado de yacimientos en la industria del
petrdleo, vulcanologia, entre otras, (Gout ef al., 2008). En todas estas circunstancias, muchas veces
se requiere de la construccion de superficies regulares que aproximen las superficies no regulares
observadas, desde el conocimiento de un conjunto de datos conocidos para estas tltimas. Aqui, las
funciones no regulares son aquellas que presentan fuertes o grandes variaciones derivadas del
conjunto de datos.

En este sentido, lograr una representacion regular (o suave) lo més exacta posible de la superficie
irregular a través de un proceso de adaptacion de datos precisos para su descripcion, es un problema
de gran importancia para las areas aplicadas, especialmente cuando se necesita describir la topografia
de modelos con irregularidad superior, (Gout et al., 2008). Para cuya resolucion se han usado las
ideas de aproximacion de funciones (curvas y/o superficies) a partir de datos que presentas fuertes y
rapidas variaciones.

Dentro de este contexto, para aproximar funciones (curvas y/o superficies) a partir de un conjunto
de datos conocidos, funcionan bien para datos regulares (aqui, seran entendidos como datos que no
presentan fuertes ni rapidas variaciones), donde se arrojan excelentes resultados. Pero, en la
presencia de datos no regulares (esto es, datos que presentan grandes o variaciones rapidas) su
eficacia no es tan buena. Especificamente, el principal problema que se presenta con las
aproximaciones de funciones no regulares, gira entorno a las fuertes y rapidas variaciones derivadas
del conjunto de datos, puesto que la utilizacion de los métodos tradicionales, en términos generales,
originan inestabilidad por exceso e insuficiencia, o simplemente, oscilaciones indeseables cerca de
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las pendientes pronunciadas, conocidas como el fenémeno de Gibss (véase, por ejemplo, Gibbs,
1899; Carslaw, 1930; Gottlieb & Shu, 1997, Boyd, 2001; Strang & Nguyen, 1996), que segin Gout
et al. (2008) puede dificultar y obstaculizar de forma local e incluso a nivel global la aproximacion
de la funcién en cuestion.

Al respecto, en la literatura cientifica se encuentran trabajos e investigaciones que estudian la
aproximacion de funciones que presentan fuertes y rapidas variaciones en el conjunto de datos. Entre
algunos métodos clasicos para aproximacion de superficies discontinuas (no regulares), se pueden
mencionar: Método de Elementos Finitos Enriquecidos (Belytschko et al., 1999), Método de
Elementos Finitos con Interfases Fortalecidas (Ortiz & Pandolfi, 1999), Métodos de Mallado
Independiente (Belytschko et al., 1994), Método de Descomposicion de Dominio con Condiciones
de Transmision Discontinuas (Lions, 1990; Alart & Curnier, 1991) y Esquemas de Volumenes
Finitos para Captura de Discontinuidades (Harten et al., 1987; Liu et al., 1994). Estos métodos
representan enfoques fundacionales para tratar discontinuidades en simulaciones numéricas,
abarcando fracturas, interfaces materiales y ondas de choque.

Donde concretamente, se proponen varias técnicas especificas que, por lo general, son
modificaciones o adaptaciones de las técnicas o algoritmos de los métodos para la aproximacion de
funciones regulares, que buscan la construccion de funciones regulares aproximantes a partir de un
conjunto de datos conocidos. Lo que resulta en versiones andlogas que requieren para su aplicacion
tomar en cuenta el conjunto donde se producen las rapidas o grandes variaciones, conocido como el
conjunto de discontinuidad, el cual, frecuentemente, es desconocido. Entonces, especificamente, en
la presencia de fuertes y rapidas variaciones en el conjunto de datos, se intenta un ajuste con el uso
de métodos clasicos de aproximacion de funciones regulares, que disciernen en el trato del conjunto
de datos regulares con el de datos no regulares.

Dentro de estos trabajos mencionados, los métodos de aproximacion propuestos contemplan la idea
central del proceso de aproximacion de funciones no regulares, la cual puede ser cristalizada a partir
de los siguientes dos pasos: P;) Paso de deteccion de discontinuidad: localizar el conjunto de
discontinuidad a partir de un conjunto de datos dados; y P,) Paso de aproximacion: aproximar la
funcion observada sobre el dominio de los datos incluyendo el conjunto de discontinuidad.

No obstante, a pesar que el problema de aproximacion de funciones (curvas y/o superficies) no
regulares ha sido estudiado bajo determinadas condiciones, tanto para funciones explicitas como
para funciones paramétricas, todavia es un tema novedoso e interesante que se encuentra
frecuentemente en varios campos de aplicaciones cientificas, como pueden ser, entre muchos, la
modelacion en geologia o las técnicas de reconstruccion de imagenes. Ademas, debido a la presencia
de fuertes y répidas variaciones en el conjunto de datos conocidos, cuando se intenta un ajuste
utilizando métodos de aproximacion convencionales, es posible obtener buenos resultados en el caso
de ajuste de curvas, pero son menos precisos los resultados en el caso de ajustes de superficies,
debido a la posibilidad que se produzca el fenomeno de Gibss. Es decir, la aparicion de algunos

Esta obra est4 bajo una Licencia Creative Commons Atribucion-No Comercial-Compartir Igual 4.0 Internacional

https://magazineasce.com/



% hg ASCE MAGAZINE ISSN: 3073-1178
y, !

meneos u oscilaciones no deseadas que a menudo se generan alrededor de algunos datos no regulares,
cuyos valores pueden cambiar rapidamente en comparacion con datos regulares vecinos. Asi, incluso
si estos métodos clasicos dan buenos resultados en el caso de ajuste de curvas, en el caso de
aproximacion de superficies, los resultados pueden ser mejorados.

Aunado a esto, es posible estudiar lo satisfactorio de los resultados obtenidos en cuanto a la calidad
de la aproximacion, la dificultad de la implementacion y el tiempo de ejecucion, entre otros.
También, resulta conveniente considerar que los pasos: P;) Paso de deteccion de discontinuidad y
P,) Paso de aproximacion; involucrados en el problema de aproximacion de funciones no regulares
forman parte del mismo problema, debido a que muchos de los métodos existentes so6lo consideran
la segunda parte del problema de aproximacién mencionado, donde se solicita como requisito para
su implementacion informacion sobre las grandes variaciones en el conjunto de datos. Ademas,
resulta conveniente considerar que el paso de deteccion y el de aproximacion forman parte del mismo
problema, pues, no siempre son compatibles los resultados de las investigaciones que los consideran
por separados (Abancin et al., 2024). Es decir, cuando se tratan de modo independiente, no siempre
resulta facil adaptar y acoplar los resultados del primero de ellos con las condiciones de entrada del
segundo.

Por todo lo antes expuesto, el proposito del presente articulo es indagar, recoger, analizar y organizar
informacion, sin pretender ser exhaustivo, sobre algunos de los elementos representativos
involucrados en la aproximacion de funciones (curvas y/o superficies) no regulares. Esto con
intenciones que sirvan de referencia para, en un primer momento, introducir los aspectos elementales
que contemplan los métodos de aproximacion de tales funciones, como son: los requerimientos,
procesamiento, funcionalidad y resultados, etc. A su vez, que se describe en forma sencilla para los
lectores noveles que se inician en la tematica abordada, con hincapié en las herramientas matematicas
que se usan en el proceso de aproximacion de este tipo de funciones; para después, en un segundo
instante, sirvan de guia para la construccion de aproximantes regulares de funciones no regulares a
partir del conjunto de datos. Todo esto, a partir de un cuerpo de documentos referenciales tales como
libros y articulos cientificos que abordan el topico planteado.

Se justifica lo expuesto anteriormente, por un lado, debido a que ayudara a develar y clarificar ante
los interesados, el abanico de posibilidades que tiene la aproximacion de funciones no regulares,
tanto dentro de la propia matematica, como para el area de las ciencias aplicadas, tales como,
Geociencias, entre otras; a su vez, servird de orientacion para aquellas personas que quieran
involucrarse con esta tematica. Mientras por otro, se espera exhortar a los investigadores a indagar
en la posibilidad de articular la gama de herramientas ofrecidas en la literatura concerniente a los
métodos de aproximacion. Aspectos que bien acoplados contribuird a la cristalizacion de técnicas de
busqueda y construccion de Optimas funciones regulares aproximantes para las funciones no
regulares. Aunado a que, la aproximacion numérica de funciones de varias variables que presentan
discontinuidades es un tema relevante de investigacion, debido a sus aplicaciones en ciencias,
geofisica, imagenes médicas, graficos por computadoras, etc. (Parra, 1999).
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Es asi que, lo anterior rebela la importancia de las extensas aplicaciones que tiene la aproximacion
de funciones (curvas y superficies) no regulares. En este sentido, la relevancia del presente trabajo
radica en torno a dos aspectos: tedrico y aplicaciones. En cuanto a lo tedrico, debido a que se presenta
de forma organizada los elementos teoricos referentes a la aproximacion de funciones no regulares
de varias variables. Esto aporta un espacio de discusion y reflexion con la finalidad de motivar el
interés a explorar las posibilidades de involucrarse con este tipo de aproximacion, articulandolas
para enriquecer y fortalecer estos métodos. Por tanto, contribuira a posibles aplicaciones futuras,
puesto que la aproximacion de funciones no regulares es un topico no acabado, debido a sus multiples
usos en diferentes areas, como por ejemplo, el procesamiento de imagenes, entre otras.

Material y métodos
En esta seccion se detallan los materiales y el enfoque metodologico utilizados para alcanzar los

objetivos propuestos en la presente investigacion, centrada en la revision y analisis de los métodos
clasicos para aproximar superficies discontinuas.

Material

Para la realizacion del estudio teérico y comparativo, se utilizé6 como base principal la literatura
cientifica especializada y los articulos seminales que constituyen los fundamentos de cada método.
La organizacidn, analisis y visualizacidon conceptual de los detalles estructurales de cada técnica se
realiz6 mediante una revision detallada. Para la presentacion de los resultados y la sintesis de la
informacion, se empled un entorno de documentacion técnica que permitio integrar el analisis
narrativo con las formulaciones matematicas clave.

Métodos

La metodologia consistié en un andlisis critico y estructurado de métodos clasicos, agrupados en
dos categorias interdependientes: deteccion y aproximacion. Para la deteccion de discontinuidades,
se revisaron y compararon cuatro enfoques paradigmaticos: el analisis multiescala mediante
ondiculas (wavelets) de Mallat y Zhong (1992), los detectores de bordes basados en difusion como
el de Canny (1986), los métodos estadisticos de deteccion de cambio de régimen (Page, 1954;
Hinkley, 1971) y las técnicas de ajuste local por minimos cuadrados (Loader, 1999). Este anélisis
se centrd en sus principios, requisitos de datos, ventajas y limitaciones.

Para la aproximacion de superficies discontinuas, el estudio se focalizo en tres métodos numéricos
clasicos: el método de Elementos Finitos de Galerkin Discontinuos (DG-FEM), cuyo desarrollo
moderno fue liderado por Cockburn y Shu (1989, 1998); los métodos de Particion de la
Unidad/Elementos Finitos Generalizados (PUM/GFEM), con fundamentos establecidos por
Melenk y Babuska (1996); y los métodos de splines de tensidon variable, cuyas bases fueron
sentadas por Schweikert (1966) y Franke (1985). El andlisis de cada método se realiz6 bajo una
estructura uniforme que incluyd su formulacion matematica, requisitos, proceso de
implementacion, funcionalidad y resultados tipicos, donde se pone especial énfasis en su capacidad
para manejar la variacion rapida y los saltos en los datos.
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Finalmente, con base en la revision integrada de estos métodos, se propuso un algoritmo tedrico
general. Concretamente, un Algoritmo Integrado de Deteccion y Aproximacion Adaptativa para
Funciones con Discontinuidades (AIDA-FD) que sintetiza un posible flujo de trabajo para abordar
problemas de aproximacion de funciones no regulares. Este algoritmo integra las fases de
deteccion, seleccion adaptativa del método de aproximacion y validacion iterativa.

Resultados
Esta seccion se dedico a exponer los principales resultados obtenidos a través de una revision

bibliografica minuciosa, enfocada en los detalles de algunos métodos para aproximar superficies
discontinuas. Esto con la finalidad de realizar un analisis e interpretaciéon que, cristalizo una
perspectiva critica sustentada teéricamente con respecto a esta tematica.

Analisis de resultados
Para iniciar se presentan algunos métodos deteccion de discontinuidades, para seguidamente

exponer otros métodos relacionados con la aproximacion de superficies discontinuas.

Métodos clasicos para detectar o localizar discontinuidades

Este aparatado estd dedicado a revisar y presentar los detalles (estructura, requisitos, procesos,
funcionalidad y resultados) de métodos clasicos para identificar la localizacion y caracteristicas de
discontinuidades en conjuntos de datos, un paso critico previo a la aproximacion de superficies
discontinuas.

M) Método de Mallat-Zhong: Andlisis Multirresolucion de Wavelet

Autores y desarrollo clasico: El método de Mallat-Zhong, fundamentado en el analisis
multiresolucion mediante ondiculas (wavelets), establece una conexion profunda entre la
persistencia de los modulos méaximos de la transformada a través de las escalas y la teoria de
singularidades. Cuando se utiliza una ondicula que es la derivada de una funcion de suavizado, la
transformada captura la derivada de la sefial suavizada a diferentes niveles de resolucion. Una
singularidad genuina, como un salto discontinuo, genera un médulo maximo cuya magnitud decae
de manera caracteristica (lenta y predecible) al aumentar la escala, un comportamiento cuantificado
por el exponente de Holder local que describe la regularidad del punto singular. En contraste, las
fluctuaciones debidas al ruido producen modulos maximos que decaen abruptamente en escalas
mas gruesas. Asi, el seguimiento y analisis de la evolucion de estas lineas de modulos maximos no
solo permite localizar discontinuidades con precision, sino también distinguirlas de artefactos
ruidosos y caracterizar su naturaleza matematica (Mallat & Zhong, 1992).

Estructura y requisitos: Se basa en la Transformada Wavelet Continua (CWT, por sus siglas en
inglés) o en una implementacion discreta piramidal. Utiliza una wavelet que es la derivada de una
funcion de suavizado (por ejemplo, una wavelet de tipo spline cliibico o la wavelet de Marr).
Requiere datos muestreados de manera uniforme o regular.

Proceso y funcionalidad.
= Se calcula la transformada de wavelet de la sefial o datos de superficie en multiples escalas.
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= Se localizan los moédulos méximos (picos) de los coeficientes de wavelet a través de las escalas.
Un punto singular (como un salto) produce una cadena de mdédulos maximos que persiste a
través de las escalas mas finas.

= El cruce por cero de los coeficientes de wavelet (cuando se usa una wavelet derivada) indica la
ubicacion precisa de la discontinuidad en cada escala. La propagacion de estos cruces por cero
a través de las escalas identifica la singularidad.

Resultados: El método produce un mapa de lineas de discontinuidades (en 2D) o puntos de salto
(en 1D). La magnitud del mdédulo méximo esta relacionada con la fuerza de la discontinuidad. Es
efectivo para distinguir discontinuidades de ruido, ya que el ruido genera mdédulos méximos que
decaen rapidamente en escalas mas gruesas, mientras que una discontinuidad verdadera persiste.

Ventajas:

= [ocalizacién multiescala: Identifica la escala a la que pertenece la singularidad, diferenciando
ruido (escalas finas) de discontinuidades estructurales (persistencia en multiples escalas).

= Precision de localizacién: Proporciona una ubicacion precisa de la discontinuidad,
especialmente en sefales 1D o a lo largo de perfiles 2D.

= Caracterizacion: La tasa de decaimiento de los médulos méximos a través de las escalas brinda
informacion sobre el tipo de singularidad (salto, pico cuspide).

Desventajas:

= Sensibilidad a la alineacion: La deteccion 6ptima depende de la eleccion de la wavelet madre.
Las wavelets con méas momentos desaparecidos pueden no detectar ciertos tipos de
discontinuidades.

= Complejidad en 2D/3D: Extender el andlisis de mddulos méximos a superficies 2D o 3D es
algoritmicamente complejo y computacionalmente costoso.

= Ruido estructurado: Puede confundir patrones de ruido de alta frecuencia con discontinuidades
genuinas si no se establece un umbral adecuado.

Formulacion matematica:

dae

Sea 1 (t) una wavelet que es la derivada de una funcion de suavizado 6(t), es decir, P(t) = v La

Transformada de Wavelet Continua (CWT) de una sefial f(t) a la escala s y posicion u es:
Wy (s,w) = {f,hsu) = f * s,

donde g, (t) = \/i;l,l) (t_Tu) Dado que Y es una derivada, se puede demostrar que

d _
We(s,u) = S@(f * O5) (u).
Por lo tanto, los modulos maximos locales de |W (s, u)| corresponden a los puntos de inflexion de
f suavizada por 6, y los cruces por cero de W (s, u) indican los maximos locales de la pendiente,
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es decir, las ubicaciones probables de saltos (Mallat & Zhong, 1992).

M) Método de Canny: Estimadores de deteccion de bordes basados en difusion

Autores y desarrollo clasico: El desarrollo clasico en la deteccion de bordes basada en difusion
encuentra su hito fundamental en el detector optimo de Canny (1986), el cual implementa de
manera eficiente un filtrado por gradientes con suavizado isotrépico Gaussiano. Sin embargo, su
fundamento matematico mdas profundo y su evolucion hacia métodos que preservan
discontinuidades con mayor precision se vinculan a la teoria de la difusion anisotropica y la
optimizacion de funcionales variacionales. Trabajos seminales como el modelo de difusion no
lineal de Perona y Malik (1990) y el modelo de descomposicion de imagenes de Rudinet et al.
(1992) generalizan el concepto al plantear ecuaciones donde el coeficiente de difusion se modula
segin la magnitud del gradiente local, deteniendo activamente el suavizado en los bordes y
permitiéndolo en regiones homogéneas. Estos marcos tedricos establecieron la base para entender
y disefiar detectores que no solo identifican discontinuidades, sino que también preservan su
localizacion y nitidez al evitar la difusion a través de ellas.

Estructura y requisitos: En esencia, son métodos que involucran un paso de suavizado anisotropico
o guiado por gradientes, seguido de una deteccion de umbrales. Requieren datos en una malla
estructurada (como una imagen o grilla regular).

Proceso y funcionalidad:

= Suavizado con derivada: Se convoluciona la sefial/imagen con la derivada de una Gaussiana, lo
que equivale a calcular el gradiente después de un suavizado isotrdpico.

= Supresion de no-maximos: En la direccion del gradiente, se eliminan los pixeles que no son
maximos locales, para afinar los bordes a un pixel de ancho.

= Umbralizacién con histéresis: Se usan dos umbrales (alto y bajo). Los pixeles de gradiente por
encima del umbral alto se marcan como bordes fuertes; los conectados a estos y por encima del
umbral bajo se conservan; el resto se descartan.

Resultados: Genera un mapa binario de bordes (discontinuidades) delgado (de un pixel de ancho)
y conectado. Su solidez frente al ruido es alta debido al paso de suavizado y a la histéresis. Es mas
un detector practico que un localizador cuantitativo de la magnitud del salto.

Ventajas:

= Robustez al ruido: El filtro Gaussiano inicial suprime eficazmente el ruido de alta frecuencia.

= Bordes conectados y delgados: La supresion de no-maximos y la umbralizacion con histéresis
producen contornos de un pixel de ancho y bien definidos.

= Optimizacion teorica: El criterio de Canny (buena deteccidon, buena localizacion, respuesta
unica) lo convierte en un estandar bien fundamentado.

Desventajas:
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= Suavizado de bordes: El filtro Gaussiano difumina la localizacion exacta del borde,
especialmente para escalas grandes de la Gaussiana.

= Parametros sensibles: El desempefio depende criticamente de la seleccion del tamafio del kernel
Gaussiano (o) y de los umbrales alto y bajo.

= Limitacion a datos estructurados: Esta disefiado naturalmente para imagenes (mallas regulares),
siendo menos directa su aplicacion a datos dispersos o no estructurados.

Formulacion matemdtica:
= Convolucién y gradiente: Dada una imagen I(x,y), se calculan las derivadas suavizadas:

9] 9]
zea(I*GJ); Gyzg(l*("o)

xZ 2
donde G, (x,y) = — e(_ 20t )

2mo?
» Magnitud y direccion del gradiente:

G
M(x,y) = /G,? +G2, O (xy)=tan? (G_y>

= Supresion de no-maximos: Para cada punto, se compara M(x,y) con los dos vecinos en la
direccion © (x,y). Si no es el maximo local, se suprime.

Umbralizacion con histéresis: Se utilizan dos umbrales Ty;gp ¥ Tiow. Los pixeles con M > Ty;qp
son bordes fuertes. Los pixeles con M < Ty,,, se descartan. Los pixeles con Ty, < M < Tp;gp se
mantienen solo si estdn conectados a un borde fuerte (Canny, 1986).

M3) Método de cambio de régimen o segmentacion

Autores y desarrollo clasico: Basado en principios estadisticos clasicos de deteccion de cambios.
Para sefiales 1D, la prueba de Page-Hinkley o el algoritmo CUSUM (Cumulative Sum) son
referentes (Page, 1954; Hinkley, 1971). Para superficies 2D, se vincula a técnicas de segmentacion
de iméagenes basadas en regiones.

Estructura y requisitos: Asume que los datos pertenecen a diferentes regimenes estadisticos (por
ejemplo, diferentes medias o varianzas) separados por la discontinuidad. Requiere un modelo
estadistico para la distribucion de los datos dentro de cada segmento homogéneo.

Proceso y funcionalidad (Ejemplo 1D - CUSUM):

= Se define una hipdtesis nula (no hay cambio) y una hipdtesis alternativa (hay un cambio en la
media en un tiempo t).

= Se calcula la suma acumulada de las diferencias entre las observaciones y la media estimada
bajo la hipotesis nula.

= Se monitorea esta suma acumulada. Cuando su valor absoluto excede un umbral predefinido, se
declara la deteccion de un cambio de régimen (discontinuidad) en el punto donde la suma
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empez6 a desviarse consistentemente.

Resultados: Identifica los puntos de cambio y segmenta los datos en regiones estadisticamente
homogéneas. Proporciona una deteccion probabilistica y es eficaz cuando la discontinuidad se
manifiesta como un cambio en las propiedades estadisticas, no solo geométricas.

Ventajas:

= Fundamento estadistico solido: Proporciona un marco probabilistico para la deteccion,
permitiendo pruebas de significancia.

= Robustez a ruido estocéstico: Esta disefiado para funcionar en presencia de ruido estadistico,
modelando los datos dentro de cada segmento.

= Deteccion de cambios en propiedades: Puede detectar no solo saltos en el valor, sino cambios
en la varianza, tendencia u otros parametros del modelo.

Desventajas:
= Conocimiento a priori del modelo: Requiere asumir o conocer la distribucion estadistica de los
datos en cada segmento (por ejemplo, normal, Poisson).

= Complejidad computacional para multiples cambios: Los algoritmos exactos para detectar
multiples puntos de cambio son costosos (0 (n?) o peor).

= Sensibilidad a supuestos: Si el modelo estadistico real de los datos se desvia del asumido, la
deteccion puede ser erronea.

Formulacion matematica (Algoritmo CUSUM): Se asume una secuencia de observaciones
independientes {x;, x5, ..., X,} con media u, antes del cambio y p; después. Se define la suma

acumulada de log-verosimilitudes:
k

_ Pul(xi)
Sk = Z In <—Pu0(xi)>.

La estadistica de decision g, = S, — 1mlr}c S;. Se detecta un cambio en el tiempo ¢ si:
<is

gr = max(S; — S) > h,
donde h es un umbral de control. El estimador del punto de cambio es T = arg 1r£1ki£1t S (Page,
1954; Hinkley, 1971). Para una simple diferencia de medias y, vs. 14, esto se reduce a monitorear

Sk = Zle(xi — U — 5/ 2), donde 6 es el cambio minimo a detectar.

My) Técnicas de ajuste local por minimos cuadrados

Autores y desarrollo clasico: Es un enfoque heuristico sélido, frecuentemente usado como paso
previo en algoritmos de interpolacion adaptativa (Loader, 1999). Se basa en la comparacion de
modelos locales ajustados a los datos.

Esta obra esta bajo una Licencia Creative Commons Atribucion-No Comercial-Compartir Igual 4.0 Internacional

https://magazineasce.com/



LY

)
*Lg ASCE MAGAZINE ISSN: 3073-1178

wnt

’&(('«(&

S

Estructura y requisitos: Requiere datos dispersos o en grilla. Se basa en la definicién de una ventana
local o un conjunto de vecinos mas cercanos alrededor de cada punto de evaluacion.

Proceso y funcionalidad.

= Para un punto dado, se ajustan dos modelos de regresion local (lineal o cuadratica) usando
minimos cuadrados ponderados; uno con todos los datos en la ventana, y otro excluyendo los
datos que estan del otro lado de un candidato a frontera.

= Se calcula un indicador de salto, como la diferencia en los residuos de ambos ajustes, o la
diferencia entre los valores predichos por dos modelos locales centrados a cada lado del punto.

= Un pico en este indicador, por encima de un umbral estadistico (relacionado con el nivel de
ruido), sefiala una probable discontinuidad.

Resultados: Produce un mapa de “probabilidad” o “indicador de fuerza” de salto en la ubicacion
de los datos. Es computacionalmente intensivo pero muy adaptable a datos no estructurados y
permite distinguir entre un gradiente pronunciado y un verdadero salto.

Ventajas:

= Flexibilidad y simplicidad conceptual: Facil de entender e implementar para datos en cualquier
dimension y estructura (regulares, dispersos).

= No paramétrico: No asume una forma global para los datos, solo suavidad local fuera de las
discontinuidades.

= Adaptabilidad: Permite definir la vecindad de forma adaptativa (k —vecinos mds cercanos,
ventanas de ancho fijo).

Desventajas:

= Eleccion de parametros critica: El tamafio de la ventana o el nimero de vecinos (k) y el umbral
de deteccion afectan enormemente los resultados. Una ventana grande suaviza los saltos; una
pequefia es ruidosa.

= (Costo computacional: Ajustar un modelo de regresion local para cada punto o vecindad es
intensivo, especialmente para grandes conjuntos de datos.

= Deteccion ambigua en bordes suaves: Puede tener dificultades para distinguir entre un gradiente
muy pronunciado continuo y un verdadero salto discontinuo.

Formulacion matemadtica (Indicador de Salto Basado en Residuos): Para un punto x, en una
superficie 2D con datos {(x;, z;)} se definen dos vecindades: N; y N, a izquierda y derecha de un
candidato a linea de discontinuidad que pasa por x,. Se ajustan dos planos locales por minimos
cuadrados ponderados:
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arg min Z wi(z; — ay, — BL(x; — x0))?,
aLEﬁLx —
iSINL

arg min Z wi(z; — ag — B (x; — x0))?,
aREPR
X;ENR
donde w; son pesos (por ejemplo, funcion de distancia). El indicador de salto en x, se define como

la diferencia en las alturas predichas:
J(xo) = |@, — agl

Un pico de J(xy) sobre un umbral ¢ (derivado del error de ajuste o nivel de ruido) indica una
discontinuidad (Loader, 1999). La direccion de la linea de discontinuidad se infiere de la particion
N;, Np que maximiza J(x,).

Métodos clasicos para aproximar superficies discontinuas

Dentro del paradigma clasico, la aproximacién de superficies con discontinuidades (saltos
abruptos, bordes) o no regularidades ha sido abordada mediante métodos que relajan los requisitos
de suavidad de las técnicas tradicionales de interpolacion. A continuacion, se detallan tres métodos
fundamentales, su estructura, requisitos, procesos, funcionalidad y resultados tipicos.

M) Método de Elementos Finitos de Galerkin Discontinuos (DG-FEM, por sus siglas en inglés)
Autores y desarrollo clasico: Aunque sus origenes conceptuales se remontan a los afios 70 (Reed
& Hill, 1973, para ecuaciones de transporte neutrdnico), su desarrollo y anélisis tedrico como
método so6lido para problemas hiperbolicos (que naturalmente desarrollan discontinuidades como
ondas de choque) fue impulsado significativamente por Cockburn y Shu (1998) en una serie de
trabajos a finales de los 80 y 90.

Estructura y requisitos: Este método combina ideas del método de elementos finitos y los métodos
de volimenes finitos. El dominio se discretiza en elementos (por ejemplo, tridngulos,
cuadrilateros). La aproximacién de la solucién es local a cada elemento, donde se utilizan
polinomios de cierto grado, y no se exige continuidad en las interfaces entre elementos.

Proceso y funcionalidad: La formulacion se basa en una forma débil de las ecuaciones gobernantes,
aplicada elemento por elemento. La conexion entre soluciones discontinuas de elementos
adyacentes se logra mediante un término de flujo numérico (por ejemplo, el flujo de Godunov, Lax-
Friedrichs local), el cual determina de manera estable el valor de la funcion en los bordes. Se
incorporan también términos de penalizacion para controlar los “saltos”.

Resultados: DG-FEM logra aproximaciones de alto orden precision en regiones suaves, mientras
que captura discontinuidades de manera estable y localizada, sin producir oscilaciones globales
(espurias). Es particularmente funcional para leyes de conservacion hiperbolicas.

Ventajas:
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= Alto orden y localidad: Proporciona aproximaciones de alta precision (alto orden polindmico)
en regiones suaves. La construccion es local por elemento, facilitando el paralelismo y el
refinamiento adaptativo (hp-adaptatividad) (Cockburn & Shu, 1998).

= Estabilidad para hiperbolicos: Diseflado intrinsecamente para problemas de conveccion
dominante e hiperbolicos, captura ondas de choque (discontinuidades fuertes) de manera estable
sin oscilaciones numéricas destructivas, gracias al uso sélido de flujos numéricos.

= Conservacion local: Las leyes de conservacion se cumplen localmente en cada elemento, una
propiedad fisica crucial en dinamica de fluidos.

= Manejabilidad de geometrias: Puede emplear mallas no estructuradas con elementos complejos.

Desventajas:

= Costo computacional: Tiene un mayor costo en memoria y operaciones en comparacion con
métodos continuos de Galerkin, debido al mayor nlimero de grados de libertad (diferentes por
elemento) y a la necesidad de resolver términos de flujo en las caras (Hesthaven & Warburton,
2008).

= Complejidad de implementacion: La formulacion, especialmente el manejo de condiciones de
contorno y flujos numéricos, es mas compleja que la de los elementos finitos continuos estdndar.

= Seleccion del flujo: La precision y estabilidad dependen de la eleccion adecuada del flujo
numérico, lo que puede requerir conocimiento especifico del problema.

Formulaciones matematicas del método:

A continuacion, se presentan las formulaciones esenciales que definen la estructura del método.
Especificamente, la formulacion se plantea para un problema modelo de ley de conservacion
escalar.

Problema modelo: Se busca u(x, t) tal que
V- fW) =0enQ,

donde f(u) es el flujo.

Formulacién débil por elementos:
a) Sea J; una triangulacion de (). En cada elemento K € J;, se busca una aproximacion uy €
V1 (K), donde V}, es un espacio polinomial de grado k.

b) Se multiplica la ecuacidon por una funcion de prueba v, € V;, se integra en K, y se aplica el
teorema de la divergencia:

0 .
J ﬂVh dx — f f(uh) *Up dx + f(uh) *NgVUp ds = 0,
K at K 0K

para toda v, € V.
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c¢) Componente clave - flujo numérico: f(uy) es el flujo numérico, una funcion definida en las
caras dK que resuelve la inconsistencia de tener dos valores de u, (uno de cada elemento
adyacente). Para una cara compartida por los elementos K* y K~, depende de ambos valores:

fu) = fluj, ui, n).

Un ejemplo clasico es el flujo de Lax-Friedrichs local:

Fla,b,m) =5 (F(@) = F5) 1~ 5 A~ @),

donde 4,,5, es una cota local de la velocidad de propagacion. Este término estabiliza la solucion y
permite capturar discontinuidades (Cockburn & Shu, 1998).

M) Métodos de Malla Libre Basados en Division de la Funcion de Base

Autores y desarrollo clasico: El marco teodrico unificador, que conecta directamente el
enriquecimiento local con la representacion eficiente de discontinuidades y su teoria de
convergencia, fue introducido por Melenk y Babuska (1996) bajo el nombre de Método de la
Particion de la Unidad (PUM). Este marco establece que, al extender un espacio de aproximacion
convencional (como el de Elementos Finitos) mediante la incorporacion local de funciones que
capturan el comportamiento singular o discontinuo de la solucion, se puede lograr una convergencia
Optima incluso cuando la malla no se alinea con las singularidades. Su realizacion mas conocida en
mecanica computacional es el Método de Elementos Finitos Generalizados (GFEM), cuyo
desarrollo préctico, andlisis numérico detallado de la convergencia para problemas con
discontinuidades, y diseminacion fueron impulsados decisivamente por los trabajos de Strouboulsis,
Babuska y Copps (2000, 2001, 2003).

Estructura y requisitos: Extiende el método de elementos finitos clasico al permitir que el espacio
local de aproximacion en cada elemento sea enriquecido con funciones conocidas que describen el
comportamiento local de la solucion, como discontinuidades o singularidades.

Proceso y funcionalidad: Sobre una malla de elementos finitos convencional, se utiliza el Método
de Particion de la Unidad (PUM, por sus siglas en inglés). Luego, esta base se enriquece localmente,
solo en los elementos cortados por una discontinuidad conocida, con una funcidén que incorpore un
salto (por ejemplo, una funcion de Heaviside). La aproximacion global es una combinacion de las
funciones de formas nodales estandar y las enriquecedoras.

Resultados: GFEM/PUM permite modelar discontinuidades internas (interfases, grietas) de manera
precisa sin necesidad de alinear la malla con la discontinuidad. Captura el salto de manera exacta
si la funcion enriquecedora lo describe correctamente, mejorando drasticamente la precision y la
tasa de convergencia frente a los FEM estandar.
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Ventajas:

Independencia de la malla: La principal fortaleza es su capacidad para modelar discontinuidades
internas (grietas, interfases) sin necesidad de remallar o alinear la malla con la geometria de la
discontinuidad (Melenk & Babuska, 1996).

Precision mejorada: El enriquecimiento local permite incorporar conocimiento a priori de la
solucion (como la funcion de Heaviside para un salto), logrando tasas de convergencia dptimas
y una representacion precisa de la singularidad.

Flexibilidad: El concepto de enriquecimiento es general y puede aplicarse a diferentes tipos de
singularidades (puntas de grieta, capas limite).

Desventajas:

Problemas de mal condicionamiento: La incorporacion de funciones enriquecedoras
(especialmente si son casi linealmente dependientes de la base estandar o entre si en el soporte)
genera matrices de rigidez mal condicionadas, lo que dificulta la solucion numérica (Babuska
& Banerjee, 2012).

Conocimiento a priori requerido: Para enriquecer eficazmente, se necesita conocer o poder
predecir la ubicacion y naturaleza de la discontinuidad, lo que no siempre es trivial.
Integracion numérica compleja: La evaluacion de las matrices requiere una integracion precisa
sobre elementos cortados por la discontinuidad, necesitando a menudo subdivisiones especiales
o técnicas de integracion elevada.

Formulaciones matematicas del método:

A continuacion, se presentan las formulaciones esenciales que definen la estructura del método.
Especificamente, la formulacion se describe para un problema de Poisson con una discontinuidad

de salto interno a lo largo de una interfaz I'.

Espacio de aproximacion enriquecido: La solucion aproximada uy (x) se construye como:

W@ = ) N@u+ ) N[HE -],

i€l JEIr
A e —

FEM Estandar  Enriquecimiento para el salto

donde,
N;(x) son las funciones de forma de FEM clasico (forman la Particion de la Unidad).

I es el conjunto total de nodos.

Ir € I es el conjunto de nodos cuyo soporte es cortado por la interfaz I'.

H(x) es la funcion de Heaviside asociada a I': H(x) = +1 enun lado y H(x) = 0 en el otro.

u; y @; son los grados de libertad estandar y enriquecidos, respectivamente. Restar H(x;) evita

problemas de linealidad (Melenk & Babuska, 1996).
Formulacion débil: La formulacion variacional (por ejemplo, para Poisson) se arma sustituyendo
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u, y funciones de prueba construidas de manera andloga en la forma bilineal y lineal
correspondiente. El enriquecimiento permite representar el salto [u]|r.

M3) Interpolacion y Aproximacion por Splines de Tension Variable

Autores y desarrollo clasico: Los splines de placa delgada (Duchon, 1976) son un método de
suavizado optimo para datos irregulares, pero suavizan excesivamente las discontinuidades. Para
controlar esto, se desarrollaron métodos que adaptan localmente el pardmetro de suavizado. Un
enfoque clasico e influyente es el de los splines con tension introducidos por Schweikert (1966) y
luego desarrollados para superficies por Franke (1985) entre otros.

Estructura y requisitos: Parten de la minimizacién de un funcional de energia que balancea un
término de ajuste a los datos y un término de “energia de curvatura” que penaliza la ondulacion.
La innovacién estd en modificar el operador de suavizado (de Laplaciano a Helmholtz)
introduciendo un parametro de tension (¢). Para capturar discontinuidades, este pardmetro se hace
local y variable.

Proceso y funcionalidad: El proceso implica dos pasos clave: P;) Deteccion de regiones de posible
discontinuidad (mediante andlisis de gradientes o residuos). P,) Ajuste local del pardmetro de
tension @(x,y): en regiones suaves, ¢ es pequefio, permitiendo flexibilidad; cerca de
discontinuidades detectadas, ¢ se incrementa fuertemente, tensando la superficie para evitar el
sobre-suavizado del salto.

Resultados: Este método produce una superficie que es continua en valor (C°) pero puede tener
cambios bruscos en el gradiente. Permite una transicion mas aguda en los bordes que los splines de
suavizado global, aunque la localizacidén exacta y magnitud del salto dependen criticamente del
esquema de deteccion y ajuste del parametro.

Ventajas:

= Aplicabilidad a datos dispersos: Es un método muy adecuado para la
interpolacion/aproximacion de datos dispersos e irregulares, comiin en geociencias y cartografia
(Franke, 1985).

= Control adaptativo del suavizado: Permite un control local explicito del comportamiento de la
superficie, relajando el suavizado donde los datos varian suavemente y forzando un
comportamiento mas rigido (tensioén) cerca de saltos detectados, preservando asi pendientes
pronunciadas.

» Continuidad garantizada: Produce una superficie globalmente continua (C°), lo cual es deseable
en ciertas visualizaciones y evita huecos.

Desventajas:
= Dependencia critica de parametros: La calidad del resultado depende fuertemente del
algoritmo de deteccion de discontinuidades y de la funcidbn que mapea los
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gradientes/residuos a los valores del pardmetro de tension. Es sensible y heuristico.

= Suavizado de saltos: A diferencia de GFEM o DG-FEM, no reproduce saltos exactos. En el
mejor caso, produce una transicion muy pronunciada pero continua, que puede difuminar
la discontinuidad real (Billings, 2013).

= Falta de base teorica fuerte: Para configuraciones generales de datos, suele ser mas un
método practico que uno con garantias tedricas solidas de convergencia hacia la funcién
discontinua subyacente.

Formulaciones matematicas del método:
A continuacion, se presentan las formulaciones esenciales que definen la estructura del método.
Especificamente, la formulacion parte del problema de minimizacion de un funcional de energia.

Funcional de energia generalizado: Se busca la funcidén s(x) que minimice:

N
1) = Y wilz = s + [ pGO(Ts, V2 )dx,

Q

donde el primer término mide el ajuste a los datos {(x;,z;)}, vy el segundo es un regularizador
que penaliza la oscilacion.

Forma del regularizador para tension variable: Para splines de tension, @ suele involucrar derivadas
primeras. Un modelo comun (en 1D para claridad, extendible a 2D) es:

N
J(s) = Z w;(z; — s(x))? + f T(x)(s”(x))2 +a(x)(s’(x))2dx.

Q

En 2D, el término de tension a menudo se formula con el uso del operador de Helmholtz. La idea
clave es que o(x) (o T(x)) no es constante, sino una funcion de tension local.

Funcion de tension local: o(x) se define en funcion del gradiente o residuo de un ajuste preliminar.
Por ejemplo:

o(x) = aeBIT@I),
donde s, es un spline de suavizado inicial. En regiones con alto gradiente (posible discontinuidad),
o(x) se hace grande, donde se penaliza fuertemente las pendientes grandes y se tensa la superficie
para que no se suavice demasiado (Franke, 1985; Billings, 2013). La minimizacion de ] (s) conduce
a una Ecuacion en Derivadas Parciales (EDP) eliptica con coeficientes variables.

Discusion
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En esta seccion se expone la discusion de los resultados obtenidos en el apartado anterior. Se
comienza presentando el andlisis de los métodos de deteccion y, después los de aproximacion para
superficies discontinuas. Especificamente, el presente estudio revis6 métodos clasicos
fundamentales para dos tareas criticas y secuenciales en el tratamiento de superficies discontinuas:
deteccion/localizacion y aproximacion. El analisis revela un panorama donde la eleccion del método
no es unica, sino que esta dictada por la naturaleza de los datos.

Respecto a la deteccion, los métodos analizados ofrecen filosofias complementarias. Los basados en
wavelets (Método de Mallat-Zhong) proporcionan un marco matematico elegante y multiescala,
ideal para sefiales 1D o perfiles donde la localizacion precisa y la caracterizacion del tipo de
singularidad son primordiales (Mallat & Zhong, 1992). Sin embargo, su extension a superficies
2D/3D complejas y su sensibilidad a pardmetros como la wavelet madre pueden limitar su
aplicabilidad general. En contraste, los detectores difusivos (Método de Canny) ofrecen una
herramienta so6lida y algoritmicamente madura para datos estructurados (imagenes), con prioridad
en la continuidad de los bordes y la supresion del ruido, a costa de difuminar la localizacion exacta
(Canny, 1986).

Por otro lado, los métodos estadisticos abordan el problema desde un paradigma diferente,
modelando la discontinuidad como un cambio de régimen. Su fortaleza reside en la deteccion
probabilistica y la capacidad de identificar cambios en propiedades estadisticas mas alla del valor
medio, siendo robustos al ruido estocastico, aunque requieren asumir un modelo de distribucion para
los datos (Page, 1954; Hinkley, 1971). Finalmente, las técnicas de ajuste local (minimos cuadrados)
destacan por su flexibilidad y adaptabilidad a datos no estructurados. Esto actlia como un detector
heuristico efectivo cuando no se dispone de un modelo estadistico claro, aunque su desempefio
depende criticamente de la eleccion de los pardmetros de la vecindad y del umbral (Loader, 1999).
En sintesis, no existe un detector universal: la wavelet es preferible para un analisis multiescala
profundo, Canny para procesamiento de imagenes ruidosas, el método estadistico para datos con un
modelo conocido y el ajuste local para una primera exploracion flexible. En otras palabras, estos
métodos son ideales para datos donde el modelo estadistico es conocido, pero su aplicabilidad puede
reducirse en contextos exploratorios.

En cuanto a la aproximacion, los métodos revisados responden a la disyuntiva entre fidelidad a la
fisica del problema y flexibilidad geométrica. Los Elementos Finitos de Galerkin Discontinuos (DG-
FEM) se erigen como la solucion intrinseca para problemas gobernados por leyes de conservacion
hiperbdlicas, donde la discontinuidad (por ejemplo, un choque) es parte de la solucion débil. Su
fortaleza radica en la conservacion local, el alto orden de precision y la estabilidad probada, pagando
el precio de una mayor complejidad computacional y de implementacion (Cockburn & Shu, 1998).
Cuando la discontinuidad es una interfaz geométrica fija o una grieta dentro de un dominio, los
Métodos de Particion de la Unidad/GFEM ofrecen una solucion elegante al desacoplar la malla de
la geometria de la discontinuidad. Su capacidad de enriquecimiento local con funciones conocidas
(Heaviside) permite una representacion exacta del salto, pero introduce el severo desafio numérico
del mal condicionamiento de las matrices (Melenk & Babuska, 1996; Babuska & Banerjee, 2012).
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Para problemas de aproximacion pura de datos dispersos y ruidosos donde la discontinuidad es un
gradiente extremadamente pronunciado, los spl/ines de tension variable ofrecen un control préctico
y local del suavizado. No obstante, su naturaleza heuristica y su incapacidad para representar saltos
exactos los sitian como un método de regularizacion adaptativa mas que de reconstruccion precisa
de discontinuidades (Franke, 1985; Billings, 2013).

La interaccion entre deteccion y aproximacion es simbidtica y define un flujo de trabajo tipico.
Me¢étodos de deteccion como los basados en minimos cuadrados locales o en wavelets pueden
alimentar parametros clave para los métodos de aproximacion: identificar la ubicacion de la interfaz
para el enriquecimiento en GFEM, o guiar la funcién de tension local o(x) en los splines. A su vez,
un paso de aproximacion preliminar (como un spline de suavizado global) puede proporcionar los
residuos o gradientes necesarios para inicializar un detector estadistico o por wavelets.

Finalmente, se observa que la aproximacion de SD es un campo inherentemente hibrido. Los
métodos mas eficaces suelen combinar una etapa de deteccion sélida, adaptada a la estadistica y
geometria de los datos, con una etapa de aproximacion cuyo nicleo matematico esté alineado con la
fisica subyacente que genera la discontinuidad (conservacion, fractura, cambio de régimen). Los
desarrollos futuros continlan en la linea de mejorar la solidez y eficiencia de esta integracion,
automatizando la seleccion de parametros y extendiendo estos marcos clasicos a volimenes de datos
mas grandes y complejos.

Para finalizar este apartado, se resume la propuesta del Algoritmo Tedrico General AIDA-FD
(Algoritmo Integrado de Deteccion y Aproximacion Adaptativa para Funciones con
Discontinuidades), una guia metodologica sintetizada a partir de la revision de los métodos clésicos.
Su objetivo es guiar de manera sistematica y solida la aproximacion de funciones no regulares a
partir de datos, integrando de manera ciclica la deteccion, la seleccion adaptativa del método y la
validacion iterativa.

La estructura del algoritmo se organiza en cinco fases secuenciales:

P;) Preprocesamiento y analisis exploratorio: Normalizacion de datos y obtencion de una
aproximacion de suavizado global para generar un campo de referencia.

P,) Deteccion y caracterizacion: Calculo de un campo indicador de discontinuidad (mediante
técnicas como ondiculas, andlisis de gradientes o residuos) y extraccion de las interfaces candidatas

(To).

P3) Seleccién y aplicacion adaptativa: Clasificacion del dominio segun las interfaces detectadas y
seleccion del método de aproximacion mas adecuado (GFEM/PUM, DG-FEM o splines adaptativos)
en funcidn de la naturaleza de la discontinuidad y los datos.

P,) Validacién y refinamiento iterativo (Opcional): Analisis de residuos para corregir la localizacion
de discontinuidades y refinar la aproximacién en un ciclo de realimentacion.

'P5) Salida y cuantificacion de incertidumbre: Entrega de la funcion aproximada final, la geometria
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de las discontinuidades y un mapa de confianza que combina densidad de datos, residuos y
proximidad a las discontinuidades.

En esencia, el marco AIDA-FD subraya la importancia critica de combinar herramientas de
deteccion especificas con esquemas numéricos disefiados para manejar discontinuidades. Al unificar
la identificacion de la singularidad, la aplicacion inteligente del método numérico y el control de
calidad iterativo, este algoritmo proporciona una guia adaptable para abordar el complejo problema
de la aproximacion de superficies discontinuas, sintetizando las lecciones fundamentales de la
literatura revisada.
Conclusiones

El problema de aproximacién de funciones (curvas y/o superficies) regulares tanto para funciones
explicitas como paramétricas, ha sido por muchos afios las referencias estandar para realizar
aproximaciones de funciones no regulares. En la primera tematica, existen muchas fuentes
bibliograficas que los abordan y documentan en la literatura cientifica, por lo general, desde
perspectivas de técnicas especializadas como lo son las de interpolacion y ajustes de funciones
regulares. Mientras que, en la segunda linea de investigacion, los procesos basicos para aproximar
funciones no regulares yacen en los métodos de aproximacion de funciones regulares, puesto que
suelen ser adaptaciones de estos tltimos tomando en cuenta el conjunto de discontinuidad.

En ambas situaciones, aun es un tema novedoso e interesante que se encuentra frecuentemente en
varios campos de aplicaciones cientificas. Particularmente, debido a la presencia de fuertes y rapidas
variaciones en el conjunto de datos conocidos, el interés se centra en innovar con respecto a: la
obtencion de buenos, mejorados y precisos resultados en el caso de ajuste de curvas y superficies no
regulares; calidad de la aproximacion, dificultad de la implementacion y el tiempo de ejecucion;
asimismo, como la consideracion de que el paso de deteccion y el de aproximacion forman parte del
mismo problema; entre otros aspectos. Pero esencialmente, en este tipo de funciones no regulares es
imprescindible evitar posibilidad de que se produzca el fenomeno de Gibss.

En cuanto a los objetivos propuestos en la presente investigacion, sobre analizar los métodos de
aproximacion de funciones regulares y no regulares, para identificar las técnicas y pasos, asi como,
organizar la informacion obtenida en un algoritmo general, se puede inferir que, la aproximacion de
funciones (curvas y/o superficies) no regulares bajo la suposicion de tener un conjunto de dados
, consiste en: P;) Deteccion del conjunto de discontinuidad y P,) Aproximacion de la funcion
observada; ambos pasos, pueden ser considerados como parte del mismo problema de forma
interdependiente o, independiente.

En cuanto a algunos de los aspectos elementales representativos se tiene que, los requerimientos y
procesamientos pueden variar dependiendo del punto de partida (P; o P,), por ejemplo, si se parte
del paso de deteccion del conjunto de discontinuidades, se pueden requerir de datos dispersos o
regularmente distribuidos; mientras que, primero, si se comienza directamente en el paso de
aproximacion de la funcidén observada, es un requisito indispensable solicitar la localizacioén del
conjunto de discontinuidad. Al respecto, muchos de los métodos existentes que solo consideran esta
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segunda parte del problema de aproximacion mencionado, como requerimiento para su
implementacion solicitan informacién sobre las grandes variaciones en el conjunto de datos. En
relacién con esto ultimo, se resalta que cuando en el problema de aproximacién los dos pasos se
tratan de modo independiente, no siempre resulta facil adaptar y acoplar los resultados del primero
de ellos (P;) con las condiciones de entrada del segundo (P,), puesto que, no necesariamente son
compatibles los resultados de las investigaciones que los consideran por separados.

Asimismo, la funcionalidad y resultados dependen del paso aplicado, por ejemplo, si solo se utiliza
P; la prioridad se encuentra en la localizacion del conjunto de discontinuidades; mientras que, si se
aplica inicamente P, el interés se encuentra en la obtencion de una aproximante regular a partir del
conocimiento del conjunto de discontinuidad. Empero, si la idea es obtener el esquema completo de
aproximacion se deben aplicar ambos pasos consecutivamente. Segundo, en cuanto a las técnicas
mas sobresalientes que contemplan los métodos de aproximacioén de funciones no regulares se
encontraron: Método de Elementos Finitos de Galerkin Discontinuos, Métodos de Malla Libre
Basados en Division de la Funcion de Base e Interpolacion y Aproximacion por Splines de Tension
Variable.

Tercerto, a modo de ilustracion se presentd un algoritmo tedrico que guia el proceso de aproximacion
de funciones no regulares. En este se presentd el esquema de forma general e incremental que
contempla el proceso de aproximacion de superficies discontinuas, donde se han puntualizado de
manera detallada los elementos tedricos involucrados y que son la base para este tipo de
aproximacion.

En términos generales, la investigacion confirmo la importancia de considerar que el paso de
deteccion y el de aproximacion forman parte del mismo problema, puesto que, no siempre son
compatibles; ademas, este trabajo permitid obtener un panorama tanto local como global con
respecto a la estructura del algoritmo de aproximacion de funciones discontinuas, lo que puede servir
de base para disefiar nuevos métodos convenientes a partir de la seleccion de herramientas
disponibles en la literatura y, utilizarlos localmente en el algoritmo presentado en esta investigacion,
por ejemplo intercambiar los métodos de deteccion o de aproximacion; asimismo, ayudard en la
trayectoria a seguir para una posible implementacion en algin lenguaje de programacion de
preferencia, para ser considerado en aplicaciones de problemas de aproximaciones reales; del mismo
modo, contribuird en el estudio tedrico con miras a futuras aplicaciones.

Finalmente, el campo aplicado como las Geociencias, presentan cada dia nuevos desafios para la
linea de investigacion de aproximacion de funciones (curvas y/o superficies) tanto regulares como
no regulares, principalmente, en cuanto estructura, requisitos, procesos, funcionalidad y resultados.
Es asi que, el presente trabajo procura inspirar a los investigadores noveles a partir de un panorama
de los métodos de aproximacién de funciones no regulares, para involucrarse en la técnicas
necesarias para la localizacion del conjunto de discontinuidad, asi como, la construccion de
funciones aproximantes; particularmente, en el disefio de métodos con una perspectiva integradora
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los dos pasos anteriores, los cuales son necesarios para un esquema completo de aproximacion de
superficies discontinuas. Esto con la finalidad de cristalizar nuevos avances de investigacion tanto
de caracter tedrico como practicos a partir de posibles aplicaciones futuras. Con respecto a esto
ultimo, una propuesta de construccion de un espacio de aproximacion y un método para superficies
discontinuas se proponen a futuro.
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