Uso de bioindicadores locales y herramientas digitales para evaluar la calidad del agua en comunidades escolares: un enfoque interdisciplinario en Ciencias Naturales.

Autores/as

DOI:

https://doi.org/10.70577/asce.v4i4.534

Palabras clave:

Bioindicadores Locales, Herramientas Digitales, Calidad Del Agua, Comunidades Escolares, Ciencias Naturales, Educación Ambiental, Enfoque Interdisciplinario.

Resumen

Este estudio presenta una propuesta metodológica interdisciplinaria centrada en el uso de bioindicadores locales y herramientas digitales para evaluar la calidad del agua en comunidades escolares, con el propósito de articular la enseñanza de las Ciencias Naturales con la resolución de problemas ambientales reales. La investigación se enmarca en un enfoque de transformación sistémica de la educación, en respuesta a la necesidad de formar ciudadanos capaces de enfrentar problemáticas complejas, como la gestión sostenible del agua. Se empleó una metodología mixta, que combinó monitoreo ambiental participativo mediante el análisis de macroinvertebrados acuáticos (bioindicadores) con el uso de tecnologías digitales (aplicaciones móviles, sensores y visualización en plataformas colaborativas). La población estuvo conformada por estudiantes de nivel básico de tres comunidades escolares rurales y periurbanas. Los resultados evidencian mejoras significativas en parámetros de calidad del agua, particularmente en el oxígeno disuelto, así como una correlación inversa entre conductividad y riqueza de taxa EPT, lo que valida la efectividad de los bioindicadores utilizados. Desde el plano educativo, se identificaron avances en el pensamiento científico ecológico de los estudiantes, aumento del compromiso con el entorno y adquisición de competencias digitales. La triangulación de datos cualitativos y cuantitativos confirmó la pertinencia del enfoque adoptado para integrar saberes ecológicos, tecnológicos y pedagógicos. En conclusión, este estudio demuestra que es posible incorporar prácticas de monitoreo ambiental científico en el currículo escolar de manera significativa, contribuyendo a la alfabetización científica y a la transformación de la educación hacia modelos más participativos, contextualizados y orientados a la sostenibilidad.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aguilar Tinoco, R. J., Carvallo Lobato, M. F., Román Camacho, D. E., Liberio Anzules, A. M., Hernández Centeno, J. A., Duran Fajardo, T. B., & Bernal Párraga, A. P. (2024). El impacto del Diseño Universal para el Aprendizaje (DUA) en la enseñanza de Ciencias Naturales: Un enfoque inclusivo y personalizado. Ciencia Latina Revista Científica Multidisciplinar, 8(5), 2162–2178. https://doi.org/10.37811/cl_rcm.v8i5.13682 DOI: https://doi.org/10.37811/cl_rcm.v8i5.13682

Amador‑Castro, F., González‑López, M. E., Lopez‑Gonzalez, G., Garcia‑Gonzalez, A., Díaz‑Torres, O., & Carbajal‑Espinosa, O. (2024). Internet of Things and citizen science as alternative water quality monitoring approaches and the importance of effective water quality communication. Journal of Environmental Management, 352, 119959. https://doi.org/10.1016/j.jenvman.2023.119959 DOI: https://doi.org/10.1016/j.jenvman.2023.119959

Araújo, J. L., Morais, C., & Paiva, J. C. (2022). Student participation in a coastal water quality citizen science project and its contribution to the conceptual and procedural learning of chemistry. Chemistry Education Research and Practice, 23(1), 100‑112. https://doi.org/10.1039/D1RP00190F DOI: https://doi.org/10.1039/D1RP00190F

Bernal Parraga, A. P., Cadena Morales, A. G., Cadena Morales, J. A., Mejía Quiñonez, J. L., Alcívar Vélez, V. E., Pinargote Carreño, V. G., & Tello Mayorga, L. E. (2024). Impacto de las plataformas de gamificación en la enseñanza: Un análisis de su efectividad educativa. Ciencia Latina Revista Científica Multidisciplinar, 8(5), 2851–2867. https://doi.org/10.37811/cl_rcm.v8i5.13742 DOI: https://doi.org/10.37811/cl_rcm.v8i5.13742

Bernal Párraga, A. P., Haro Cedeño, E. L., Reyes Amores, C. G., Arequipa Molina, A. D., Zamora Batioja, I. J., Sandoval Lloacana, M. Y., & Campoverde Duran, V. D. R. (2024). La gamificación como estrategia pedagógica en la educación matemática. Ciencia Latina Revista Científica Multidisciplinar, 8(3), 6435–6465. https://doi.org/10.37811/cl_rcm.v8i3.11834 DOI: https://doi.org/10.37811/cl_rcm.v8i3.11834

Bernal Párraga, A. P., Ibarvo Arias, J. A., Amaguaña Cotacachi, E. J., Gloria Aracely, C. T., Constante Olmedo, D. F., Valarezo Espinosa, G. H., & Poveda Gómez, J. A. (2025). Innovación metodológica en la enseñanza de las Ciencias Naturales: Integración de realidad aumentada y aprendizaje basado en proyectos para potenciar la comprensión científica en educación básica. Revista Científica de Salud y Desarrollo Humano, 6(2), 488–513. https://doi.org/10.61368/r.s.d.h.v6i2.613 DOI: https://doi.org/10.61368/r.s.d.h.v6i2.613

Bernal Párraga, A. P., Jaramillo Rodríguez, V. A., Correa Pardo, Y. C., Andrade Avilés, W. A., Cruz Gaibor, W. A., & Constante Olmedo, D. F. (2024). Metodologías activas innovadoras de aprendizaje aplicadas al medioambiente en edades tempranas desde el área de Ciencias Naturales. Ciencia Latina Revista Científica Multidisciplinar, 8(4), 2892–2916. https://doi.org/10.37811/cl_rcm.v8i4.12536 DOI: https://doi.org/10.37811/cl_rcm.v8i4.12536

Bernal Párraga, A. P., Orozco Maldonado, M. E., Salinas Rivera, I. K., Gaibor Dávila, A. E., Gaibor Dávila, V. M., Gaibor Dávila, R. S., & García Monar, K. R. (2024). Análisis de recursos digitales para el aprendizaje en línea para el área de Ciencias Naturales. Ciencia Latina Revista Científica Multidisciplinar, 8(4), 9921–9938. https://doi.org/10.37811/cl_rcm.v8i4.13141 DOI: https://doi.org/10.37811/cl_rcm.v8i4.13141

Bernal Párraga, A. P., Sandra Verónica, L. P., Orozco Maldonado, M. E., Arreaga Soriano, L. L., Vera Figueroa, L. V., Chimbay Vallejo, N. M., & Zambrano Lamilla, L. M. (2024). Análisis comparativo de la metodología STEM y otras metodologías activas en la educación general básica. Ciencia Latina Revista Científica Multidisciplinar, 8(4), 10094–10113. https://doi.org/10.37811/cl_rcm.v8i4.13153 DOI: https://doi.org/10.37811/cl_rcm.v8i4.13153

Bonney, R., Phillips, T. B., Ballard, H. L., & Enck, J. W. (2016). Can citizen science enhance public understanding of science? Public Understanding of Science, 25(1), 2–16. https://doi.org/10.1177/0963662515607406 DOI: https://doi.org/10.1177/0963662515607406

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa DOI: https://doi.org/10.1191/1478088706qp063oa

Brody, H., & Ragin, D. F. (2022). Teaching environmental science through interdisciplinary approaches in K-12 education. Journal of Environmental Studies and Sciences, 12(4), 612–623. https://doi.org/10.1007/s13412-022-00752-1

Capdevila, A. S., Perelló, J., & Bonhoure, I. (2020). Citizens’ perception of water quality: A key factor for the success of citizen science projects. Science of The Total Environment, 715, 136865. https://doi.org/10.1016/j.scitotenv.2020.136865

Capps, D. K., & Crawford, B. A. (2017). Inquiry-based instruction and teaching about nature of science: Are they happening? Journal of Science Teacher Education, 28(5), 433–449. https://doi.org/10.1080/1046560X.2017.1356560

Chandel, C. P. S. (2024). Use of algae as bioindicators of water quality: A review. Water and Environment Journal, 38(1), 14–22. https://doi.org/10.1002/wwp2.12137 DOI: https://doi.org/10.1002/wwp2.12137

Chen, T., et al. (2025). Construction of a comprehensive water quality assessment: The BE‑WQI framework. Journal of Water Quality, https://doi.org/10.1016/j.jwqa.2025.720.

Chen, T., Song, C., Zhan, P., Yao, J., Li, Y., & Zhu, J. (2022). Remote sensing estimation of the flood storage capacity of basin-scale lakes and reservoirs at high spatial and temporal resolutions. Science of The Total Environment, 807(Part 1), 150772. https://doi.org/10.1016/j.scitotenv.2021.150772 DOI: https://doi.org/10.1016/j.scitotenv.2021.150772

Cho, Y. (2024). Geo-participation of youth in school-based environmental education using mobile mapping tools. Urban Science, 4(4), 53. https://doi.org/10.3390/urbansci4040053 DOI: https://doi.org/10.3390/urbansci4040053

Creswell, J. W., & Plano Clark, V. L. (2018). Designing and Conducting Mixed Methods Research (3rd ed.). SAGE Publications.

D’Alessio, M., Berta, M., & Ghezzi, L. (2021). Digital tools for participatory environmental monitoring: Integrating citizen science and IoT. Environmental Monitoring and Assessment, 193(5), 287. https://doi.org/10.1007/s10661-021-09034-1

Fernández-Llamazares, Á., Garteizgogeascoa, M., Basu, N., & Reyes-García, V. (2020). The role of schools in biodiversity conservation: Linking education and citizen science. Ambio, 49, 126–137. https://doi.org/10.1007/s13280-019-01124-3

Fraisl, D., Campbell, J., See, L., Wehn, U., Wardlaw, J., Gold, M., & Moorthy, I. (2020). Mapping citizen science contributions to the UN sustainable development goals. Sustainability Science, 15(6), 1735–1751. https://doi.org/10.1007/s11625-020-00833-7 DOI: https://doi.org/10.1007/s11625-020-00833-7

Guerrero‑Aguilar, A., Rodríguez‑Castrejón, U. E., Serafín‑Muñoz, A. H., Schüth, C., & Noriega‑Luna, B. (2022). Bioindicators and biomonitoring: Review of methodologies applied in water bodies and use during the Covid‑19 pandemic. Acta Universitaria, 32, e3388. https://doi.org/10.15174/au.2022.3388 DOI: https://doi.org/10.15174/au.2022.3388

Hajj-Hassan, A., Chaker, A., & Cederqvist, L. (2024). Leveraging digital tools for environmental education: A review of mobile applications for sustainability learning. Sustainability, 16(9), 3733. https://doi.org/10.3390/su16093733

Hassan, A., Chaker, A., & Cederqvist, L. (2024). Leveraging digital tools for environmental education: A review of mobile applications for sustainability learning. Sustainability, 16(9), 3733. https://doi.org/10.3390/su16093733 DOI: https://doi.org/10.3390/su16093733

Hsu, Y.‑S., Kao, H.‑L., & Chai, C.‑S. (2023). Revolutionizing informal education: Intersection of citizen science and learning theories. International Journal of Environmental and Science Education, 18(3), 1–17. https://www.ijese.com/download/revolutionizing-informal-education-intersection-of-citizen-science-and-learning-theories-13726.pdf DOI: https://doi.org/10.29333/ijese/13726

Irawati, S., & Sulisworo, D. (2023). The integration of digital platforms in environmental education: A case of blended learning in Indonesian schools. Heliyon, 9(3), e15009. https://doi.org/10.1016/j.heliyon.2023.e15009 DOI: https://doi.org/10.1016/j.heliyon.2023.e15009

Lausch, A., et al. (2024). Monitoring water diversity and water quality with remote sensing: A trait‑based integrative approach. Remote Sensing, 16(13), 2425. https://doi.org/10.3390/rs16132425 DOI: https://doi.org/10.3390/rs16132425

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. SAGE Publications. https://books.google.com/books/about/Naturalistic_Inquiry.html?id=2oA9aWlNeooC DOI: https://doi.org/10.1016/0147-1767(85)90062-8

Lukhabi, D. K., Mensah, P. K., Asare, N. K., Awushie Akwetey, M. F., & Faseyi, C. A. (2024). Benthic macroinvertebrates as indicators of water quality: A case study of estuarine ecosystems along the coast of Ghana. Heliyon, 10 (7), e28018. https://doi.org/10.1016/j.heliyon.2024.e28018 DOI: https://doi.org/10.1016/j.heliyon.2024.e28018

McCarty, J., Tuffnell, N., & Caruso, B. (2025). Validating citizen-generated data for environmental monitoring: A multi-site comparison. Environmental Science & Policy, 161, 104–117. https://doi.org/10.1016/j.envsci.2025.103908

McKinley, D. C., Miller-Rushing, A. J., Ballard, H. L., Bonney, R., Brown, H., Cook-Patton, S. C., . & Soukup, M. A. (2017). Citizen science can improve conservation science, natural resource management, and environmental protection. Biological Conservation, 208, 15–28. https://doi.org/10.1016/j.biocon.2016.05.015 DOI: https://doi.org/10.1016/j.biocon.2016.05.015

Orozco‑González, C. E., & Ocasio‑Torres, M. E. (2023). Aquatic macroinvertebrates as bioindicators of water quality: A study of an ecosystem regulation service in a tropical river. Ecologies, 4(2), 209‑228. https://doi.org/10.3390/ecologies4020015 DOI: https://doi.org/10.3390/ecologies4020015

Parmar, T. K., Rawtani, D., & Agrawal, Y. K. (2016). Bioindicators: The natural indicator of environmental pollution. BioInorganic Chemistry and Applications, 2016, 1–11. https://doi.org/10.1155/2016/4569724

Peeters, E. T. H. M., Gerritsen, A. A. M., Seelen, L. M. S., Begheyn, F., Rienks, H., & Weijters, M. J. H. (2022). Monitoring biological water quality by volunteers complements professional assessments. PLOS ONE, 17(2), e0263899. https://doi.org/10.1371/journal.pone.0263899 DOI: https://doi.org/10.1371/journal.pone.0263899

Ramesh, A., Raj, A., & Shrestha, A. (2024). Community-based monitoring of drinking water quality by minimally trained users using low-cost sensors. ACS ES&T Water, 4(7), 1560–1570. https://doi.org/10.1021/acsestwater.4c00164 DOI: https://doi.org/10.1021/acsestwater.4c00164

Ruiz-Moreno, D., Salazar-González, A., & Bustamante, A. (2021). Ética y participación comunitaria en la investigación ambiental: lineamientos para contextos educativos. Revista Colombiana de Bioética, 16(1), 95–112. https://doi.org/10.18270/rcb.v16i1.3501

Saleem, F., Rehman, S. U., & Saeed, M. (2024). Mobile sensor networks and participatory sensing for water quality monitoring: Review and research challenges. Environmental Technology & Innovation, 35, 103467. https://doi.org/10.1016/j.eti.2023.103467 DOI: https://doi.org/10.1016/j.eti.2023.103467

Santana Mero, A. P., Bernal Párraga, A. P., Herrera Cantos, J. F., Bayas Chacha, L. M., Muñoz Solórzano, J. M., Ordoñez Ruiz, I., Santín Castillo, A. P., & Jijón Sacon, F. J. (2024). Aprendizaje adaptativo: Innovaciones en la personalización del proceso educativo en Lengua y Literatura a través de la tecnología. Ciencia Latina Revista Científica Multidisciplinar, 8(4), 480–517. https://doi.org/10.37811/cl_rcm.v8i4.12292 DOI: https://doi.org/10.37811/cl_rcm.v8i4.12292

Shams El-Din, N. G., Ibrahim, A. M., & El-Gohary, F. A. (2022). Using aquatic macroinvertebrates as bioindicators for water quality assessment in the Nile Delta. Egyptian Journal of Aquatic Biology and Fisheries, 26(3), 45–60. https://doi.org/10.21608/ejabf.2022.236331

Shao, G. P., & Bishop, I. J. (2025). Citizen science in river monitoring: A systematic literature review. Environmental Science & Policy, https://doi.org/10.3389/fenvs.2025.1609084 DOI: https://doi.org/10.3389/fenvs.2025.1609084

Stankiewicz, J., König, A., & Pickar, K. (2023). How certain is good enough? Managing data quality & uncertainty in citizen science water monitoring. Citizen Science: Theory and Practice, 8(1), 39. https://doi.org/10.5334/cstp.592 DOI: https://doi.org/10.5334/cstp.592

Staude, A., Förster, T., & Liess, M. (2024). Low-cost IoT-based water quality sensors: Validation and field application in school projects. Sensors, 24(8), 2675. https://doi.org/10.3390/s24082675

Tang, J., Zhang, L., & Huang, Z. (2024). Internet of Things applications for environmental monitoring: A review of recent developments. Environmental Research, 246, 118890. https://doi.org/10.1016/j.envres.2023.118890

von Gönner, J., Masson, T., Köhler, S., Fritsche, I., & Bonn, A. (2024). Citizen science promotes knowledge, skills and collective action to monitor and protect freshwater streams. People and Nature, 6(6), 2357–2373. https://doi.org/10.1002/pan3.10714 DOI: https://doi.org/10.1002/pan3.10714

Woods, S. (2025). How citizen science can help to solve the global freshwater crisis. Nature, 644, 582. https://doi.org/10.1038/d41586-025-02614-7 DOI: https://doi.org/10.1038/d41586-025-02614-7

Yin, R. K. (2014). Case Study Research: Design and Methods (5th ed.). SAGE Publications. Enlace: https://books.google.com/books/about/Case_Study_Research.html?id=Cdk5DQAAQBAJ

Yin, R. K. (2018). Case Study Research and Applications: Design and Methods (6th ed.). SAGE Publications. Enlace: https://books.google.com/books/about/Case_Study_Research_and_Applications.html?id=6DwmDwAAQBAJ

Zamora Arana, M. G., Bernal Párraga, A. P., Ruiz Cires, O. A., Cholango Tenemaza, E. G., & Santana Mero, A. P. (2024). Impulsando el aprendizaje en el aula: El rol de las aplicaciones de aprendizaje adaptativo impulsadas por inteligencia artificial en la educación básica. Ciencia Latina Revista Científica Multidisciplinar, 8(3), 4301–4318. https://doi.org/10.37811/cl_rcm.v8i3.11645 DOI: https://doi.org/10.37811/cl_rcm.v8i3.11645

Zhu, X., Lin, Q., & Ma, J. (2022). Temporal analysis of surface water quality using multivariate statistical techniques. Science of the Total Environment, 830, 154765. https://doi.org/10.1016/j.scitotenv.2022.154765 DOI: https://doi.org/10.1016/j.scitotenv.2022.154765

Descargas

Publicado

2025-12-03

Cómo citar

Flores Abad, E. R., Chiluisa Parra, N. F., Rudy Fernando, L. O., Flores Palma, V. E., & Gómez Mezones, D. A. (2025). Uso de bioindicadores locales y herramientas digitales para evaluar la calidad del agua en comunidades escolares: un enfoque interdisciplinario en Ciencias Naturales. ASCE MAGAZINE, 4(4), 2397–2426. https://doi.org/10.70577/asce.v4i4.534

Artículos similares

<< < 15 16 17 18 19 20 21 22 23 24 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.