Del Plato a la Glucosa: Predicción ML de Respuestas Posprandiales a Banquetes Keto vs Tradicionales en DT2

Autores/as

DOI:

https://doi.org/10.70577/ASCE/87.114/2025

Palabras clave:

Glucemia Posprandial, Machine Learning, ElasticNet, Validación LOGO, Nutrición Personalizada.

Resumen

Este estudio se centra en el desarrollo y la evaluación rigurosa de modelos de Machine Learning (ML) para predecir el pico de respuesta glucémica posprandial (PPGR_peak_0_120) en individuos con riesgo metabólico, analizando banquetes Keto versus tradicionales. El objetivo principal fue integrar un conjunto exhaustivo de variables (fenotipo clínico, composición nutricional y marcadores de microbiota) para mejorar la precisión de la predicción individual. Se aplicaron modelos de regresión penalizada (ElasticNet, Lasso) y un modelo no lineal (GradientBoosting). La validación se realizó mediante la estricta estrategia Leave-One-Group-Out (LOGO) para evaluar la capacidad real de generalización a nuevos participantes. El modelo ElasticNet resultó ser el de mejor rendimiento, alcanzando un RMSE de 32.13 mg/dL. Aunque la R2 negativa obtenida en la validación LOGO subraya el desafío de la alta variabilidad inter-individual, el RMSE relativo (∼18% de la DE) es clínicamente aceptable. Los modelos convergieron en la identificación de factores de riesgo robustos: el BMI_kgm2 y el HbA1c_pct son consistentemente los predictores más potentes de la magnitud del pico glucémico. Los hallazgos destacan la relevancia de la ingeniería de características nutricionales (interacciones dieta × macronutrientes, y densidades calóricas), demostrando que la proporción y el contexto de los nutrientes son cruciales. El estudio concluye que, si bien la predicción individual precisa es compleja, los modelos son herramientas valiosas para identificar jerarquías de riesgo y fundamentar intervenciones dietéticas personalizadas en la gestión de la Diabetes Tipo 2.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Arefeen, Asiful, et al. “Forewarning Postprandial Hyperglycemia with Interpretations Using Machine Learning.” 2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN) [Ioannina, Greece], 2022, pp. 1–4. DOI.org (Crossref), https://doi.org/10.1109/BSN56160.2022.9928449 DOI: https://doi.org/10.1109/BSN56160.2022.9928449

Barua, Souptik, et al. “A Machine Learning Framework to Quantify Postprandial Glucose Responses in Gestational Diabetes.” Diabetes Technology and Obesity Medicine, vol. 1, no. 1, Mar. 2025, pp. 12–17. DOI.org (Crossref), https://doi.org/10.1089/dtom.2024.0003 DOI: https://doi.org/10.1089/dtom.2024.0003

Ben-Yacov, Orly, et al. “Personalized Postprandial Glucose Response–Targeting Diet Versus Mediterranean Diet for Glycemic Control in Prediabetes.” Diabetes Care, vol. 44, no. 9, Sep. 2021, pp. 1980–91. DOI.org (Crossref), https://doi.org/10.2337/dc21-0162 DOI: https://doi.org/10.2337/dc21-0162

Brügger, Victoria, et al. “Predicting Postprandial Glucose Excursions to Personalize Dietary Interventions for Type-2 Diabetes Management.” Scientific Reports, vol. 15, no. 1, Jul. 2025, p. 25920. DOI.org (Crossref), https://doi.org/10.1038/s41598-025-08003-4 DOI: https://doi.org/10.1038/s41598-025-08003-4

Choudhry, Niteesh K., et al. “PERSONALIZED GLYCEMIC RESPONSES TO FOOD AMONG INDIVIDUALS WITH TYPE 2 DIABETES IN INDIA: DEVELOPMENT OF A MACHINE LEARNING PREDICTION MODEL.” 22 Oct. 2024. Endocrinology (including Diabetes Mellitus and Metabolic Disease), https://doi.org/10.1101/2024.10.20.24315560 DOI: https://doi.org/10.1101/2024.10.20.24315560

Dyńka, Damian, et al. “Ketogenic Diets for Body Weight Loss: A Comparison with Other Diets.” Nutrients, vol. 17, no. 6, Mar. 2025, p. 965. DOI.org (Crossref), https://doi.org/10.3390/nu17060965 DOI: https://doi.org/10.3390/nu17060965

Gardner, Christopher D, et al. “Effect of a Ketogenic Diet versus Mediterranean Diet on Glycated Hemoglobin in Individuals with Prediabetes and Type 2 Diabetes Mellitus: The Interventional Keto-Med Randomized Crossover Trial.” The American Journal of Clinical Nutrition, vol. 116, no. 3, Sep. 2022, pp. 640–52. DOI.org (Crossref), https://doi.org/10.1093/ajcn/nqac154 DOI: https://doi.org/10.1093/ajcn/nqac279

Ghasemi, Parisa, et al. “Impact of Very Low Carbohydrate Ketogenic Diets on Cardiovascular Risk Factors among Patients with Type 2 Diabetes; GRADE-Assessed Systematic Review and Meta-Analysis of Clinical Trials.” Nutrition & Metabolism, vol. 21, no. 1, Jul. 2024, p. 50. DOI.org (Crossref), https://doi.org/10.1186/s12986-024-00824-w DOI: https://doi.org/10.1186/s12986-024-00824-w

Goldenberg, Joshua Z, et al. “Efficacy and Safety of Low and Very Low Carbohydrate Diets for Type 2 Diabetes Remission: Systematic Review and Meta-Analysis of Published and Unpublished Randomized Trial Data.” BMJ, Jan. 2021, p. m4743. DOI.org (Crossref), https://doi.org/10.1136/bmj.m4743 DOI: https://doi.org/10.1136/bmj.m4743

Hengist, Aaron, et al. “Ketogenic Diet but Not Free-Sugar Restriction Alters Glucose Tolerance, Lipid Metabolism, Peripheral Tissue Phenotype, and Gut Microbiome: RCT.” Cell Reports Medicine, vol. 5, no. 8, Aug. 2024, p. 101667. DOI.org (Crossref), https://doi.org/10.1016/j.xcrm.2024.101667 DOI: https://doi.org/10.1016/j.xcrm.2024.101667

Ji, Chenyang, et al. “Continuous Glucose Monitoring Combined with Artificial Intelligence: Redefining the Pathway for Prediabetes Management.” Frontiers in Endocrinology, vol. 16, May 2025, p. 1571362. DOI.org (Crossref), https://doi.org/10.3389/fendo.2025.1571362 DOI: https://doi.org/10.3389/fendo.2025.1571362

Klonoff, David C., et al. “CGM Data Analysis 2.0: Functional Data Pattern Recognition and Artificial Intelligence Applications.” Journal of Diabetes Science and Technology, Aug. 2025, p. 19322968251353228. DOI.org (Crossref), https://doi.org/10.1177/19322968251353228 DOI: https://doi.org/10.1177/19322968251353228

Lim, Min Hyuk, et al. “A Deep Learning Framework for Virtual Continuous Glucose Monitoring and Glucose Prediction Based on Life-Log Data.” Scientific Reports, vol. 15, no. 1, May 2025, p. 16290. www.nature.com, https://doi.org/10.1038/s41598-025-01367-7 DOI: https://doi.org/10.1038/s41598-025-01367-7

Luo, Wei, et al. “Low Carbohydrate Ketogenic Diets Reduce Cardiovascular Risk Factor Levels in Obese or Overweight Patients with T2DM: A Meta-Analysis of Randomized Controlled Trials.” Frontiers in Nutrition, vol. 9, Dec. 2022, p. 1092031. DOI.org (Crossref), https://doi.org/10.3389/fnut.2022.1092031 DOI: https://doi.org/10.3389/fnut.2022.1092031

Merovci, Aurora, et al. “Effect of Weight-Maintaining Ketogenic Diet on Glycemic Control and Insulin Sensitivity in Obese T2D Subjects.” BMJ Open Diabetes Research & Care, vol. 12, no. 5, Oct. 2024, p. e004199. DOI.org (Crossref), https://doi.org/10.1136/bmjdrc-2024-004199 DOI: https://doi.org/10.1136/bmjdrc-2024-004199

Parra, Daniel, et al. “Learning Difference Equations with Structured Grammatical Evolution for Postprandial Glycaemia Prediction.” arXiv:2307.01238, arXiv, 3 Jul. 2023. arXiv.org, https://doi.org/10.48550/arXiv.2307.01238

Parry‐Strong, Amber, et al. “Very Low Carbohydrate (Ketogenic) Diets in Type 2 Diabetes: A Systematic Review and Meta‐analysis of Randomized Controlled Trials.” Diabetes, Obesity and Metabolism, vol. 24, no. 12, Dec. 2022, pp. 2431–42. DOI.org (Crossref), https://doi.org/10.1111/dom.14837 DOI: https://doi.org/10.1111/dom.14837

Rein, Michal, et al. “Effects of Personalized Diets by Prediction of Glycemic Responses on Glycemic Control and Metabolic Health in Newly Diagnosed T2DM: A Randomized Dietary Intervention Pilot Trial.” BMC Medicine, vol. 20, no. 1, Dec. 2022, p. 56. DOI.org (Crossref), https://doi.org/10.1186/s12916-022-02254-y DOI: https://doi.org/10.1186/s12916-022-02254-y

Shao, Jian, et al. “Generalization of a Deep Learning Model for Continuous Glucose Monitoring–Based Hypoglycemia Prediction: Algorithm Development and Validation Study.” JMIR Medical Informatics, vol. 12, May 2024, pp. e56909–e56909. DOI.org (Crossref), https://doi.org/10.2196/56909 DOI: https://doi.org/10.2196/56909

Wang, Shihan, et al. “Dynamic Prediction of Postprandial Glycemic Response and Personalized Dietary Interventions Based on Machine Learning.” The Journal of Nutrition, Sep. 2025, p. S002231662500567X. DOI.org (Crossref), https://doi.org/10.1016/j.tjnut.2025.09.023 DOI: https://doi.org/10.1016/j.tjnut.2025.09.023

Xiong, Xin, et al. “Prediction of Personalised Postprandial Glycaemic Response in Type 1 Diabetes Mellitus.” Frontiers in Endocrinology, vol. 15, Jul. 2024, p. 1423303. DOI.org (Crossref), https://doi.org/10.3389/fendo.2024.1423303 DOI: https://doi.org/10.3389/fendo.2024.1423303

Descargas

Publicado

2025-10-02

Cómo citar

Álvarez Salazar, G. C. (2025). Del Plato a la Glucosa: Predicción ML de Respuestas Posprandiales a Banquetes Keto vs Tradicionales en DT2. ASCE MAGAZINE, 4(4), 87–114. https://doi.org/10.70577/ASCE/87.114/2025

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.