Análisis de contingencias, caso de estudio sistema de 14 barras
DOI:
https://doi.org/10.70577/asce.v5i1.643Palabras clave:
Contingencia N-1; Confiabilidad Operativa; Ranking De Severidad; Flujo De Potencia; Sistema De 14 Barras.Resumen
Este trabajo presenta un análisis de contingencias tipo N-1 aplicado a un sistema de 14 barras con el objetivo de determinar el ranking de severidad de fallas y proponer soluciones técnicas que mejoren la confiabilidad operativa. Se evaluaron ocho escenarios aleatorios de contingencia mediante simulaciones en GAMS Studio. El índice de contingencia se calculó con base en la cargabilidad de líneas y transformadores, identificando como eventos más críticos la salida del transformador 3, la línea 1-2 y la línea 6-13. Asimismo, se detectó que la salida del generador G1, aunque con un índice bajo, genera un apagón total debido a su alta participación en la generación. Entre las soluciones propuestas se incluyen la repotenciación del generador G2, el refuerzo de la línea 9-10 y la instalación de una línea paralela a la 1-2, logrando reducciones significativas en los índices de severidad y mejorando la confiabilidad del sistema. Los resultados confirman que el análisis sistemático de contingencias N-1 y el estudio de medidas de refuerzo selectivas permiten la toma de decisiones en función de optimizar la operación de redes eléctricas y reducir riesgos asociados a fallas críticas. Estos hallazgos apoyan la priorización de inversiones, mantenimiento preventivo y planificación de expansión futura.
Descargas
Citas
Álvarez-Romero, G., Castro, L. M., & Roncero-Sánchez, P. (2020). Effective sensitivity-based method for N-1 contingency analysis of VSC-based MTDC power grids considering power generation droop speed controls. International Journal of Electrical Power & Energy Systems, 122, 106175. https://doi.org/10.1016/j.ijepes.2020.106175 DOI: https://doi.org/10.1016/j.ijepes.2020.106175
Bhuiyan, M. Z. A., Anders, G. J., Philhower, J., & Du, S. (2019). Review of static risk-based security assessment in power system. IET Cyber-Physical Systems: Theory & Applications, 4(3), 233–239. https://doi.org/10.1049/iet-cps.2018.5080 DOI: https://doi.org/10.1049/iet-cps.2018.5080
Campaña, M., Masache, P., Inga, E., & Carrión, D. (2023). Voltage stability and electronic compensation in electrical power systems using simulation models. Ingenius. Revista de Ciencia y Tecnología, (29), 9–23. https://doi.org/10.17163/ings.n29.2023.01 DOI: https://doi.org/10.17163/ings.n29.2023.01
Entekhabi-Nooshabadi, A. M., Hashemi-Dezaki, H., & Taher, S. A. (2021). Optimal microgrid’s protection coordination considering N-1 contingency and optimum relay characteristics. Applied Soft Computing, 98, 106741. https://doi.org/10.1016/j.asoc.2020.106741 DOI: https://doi.org/10.1016/j.asoc.2020.106741
Faraji, J., Hashemi-Dezaki, H., & Ketabi, A. (2021). Stochastic operation and scheduling of energy hub considering renewable energy sources’ uncertainty and N-1 contingency. Sustainable Cities and Society, 65, 102578. https://doi.org/10.1016/j.scs.2020.102578 DOI: https://doi.org/10.1016/j.scs.2020.102578
Gholami, M. (2020). Static security assessment of power systems: A review. International Transactions on Electrical Energy Systems, 30(9), e12432. https://doi.org/10.1002/2050-7038.12432 DOI: https://doi.org/10.1002/2050-7038.12432
Gómez-Expósito, A., Conejo, A. J., & Cañizares, C. A. (Eds.). (2018). Electric energy systems: Analysis and operation (2nd ed.). CRC Press. DOI: https://doi.org/10.1201/9781420007275
Gutiérrez-Alcaraz, G., Álvarez, R. E., Hinojosa, V. H., Ríos, M. A., & Canizares, C. A. (2022). Security-constrained unit commitment: An efficient DC-based model with user cuts. IEEE Transactions on Power Systems, 37(3), 2032–2041. https://doi.org/10.1109/TPWRS.2021.3116462 DOI: https://doi.org/10.1109/TPWRS.2021.3116462
Hailu, E. A., Nyakoe, G. N., & Muriithi, C. M. (2023). Techniques of power system static security assessment and improvement: A literature survey. Heliyon, 9(3), e14524. https://doi.org/10.1016/j.heliyon.2023.e14524 DOI: https://doi.org/10.1016/j.heliyon.2023.e14524
Hinojosa, V. H. (2020). Comparing corrective and preventive security-constrained DCOPF problems using linear shift-factors. Energies, 13(3), 516. https://doi.org/10.3390/en13030516 DOI: https://doi.org/10.3390/en13030516
Hinojosa, V. H., & Velásquez, J. (2016). Improving the mathematical formulation of security-constrained generation capacity expansion planning using power transmission distribution factors and line outage distribution factors. Electric Power Systems Research, 140, 391–400. https://doi.org/10.1016/j.epsr.2016.06.002 DOI: https://doi.org/10.1016/j.epsr.2016.06.002
Marín-Cano, J., Marín, M., Arias, M., Saldarriaga-Zuluaga, S., & Jaramillo-Duque, Á. (2019). Implementation of user cuts to reduce the computational burden of N-1 security-constrained unit commitment. Energies, 12(12), 2283. https://doi.org/10.3390/en12122283 DOI: https://doi.org/10.3390/en12071399
Midcontinent Independent System Operator. (2024, May 1). Transmission cost estimation guide for MTEP24. https://cdn.misoenergy.org/20240501%20PSC%20Item%2004%20MISO%20Transmission%20Cost%20Estimation%20Guide%20for%20MTEP24632680.pdf
North American Electric Reliability Corporation. (2023). TPL-001-5.1—Transmission system planning performance requirements. https://www.nerc.com/globalassets/standards/reliability-standards/tpl/tpl-001-5.1.pdf
Qian, T., Shi, F., Wang, K., Yang, S., Geng, J., Li, Y., & Wu, Q. (2022). N-1 static security assessment method for power grids with high penetration rate of renewable energy generation. Electric Power Systems Research, 211, 108200. https://doi.org/10.1016/j.epsr.2022.108200 DOI: https://doi.org/10.1016/j.epsr.2022.108200
Sass, F., Sennewald, T., Marten, A., & Westermann, D. (2017). Mixed AC high-voltage direct current benchmark test system for security constrained optimal power flow calculation. IET Generation, Transmission & Distribution, 11, 447–455. https://doi.org/10.1049/iet-gtd.2016.0993 DOI: https://doi.org/10.1049/iet-gtd.2016.0993
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2026 María José Mendoza Salazar, Victor Oswaldo Cevallos Vique, Andrea Alejandra Cevallos Valverde

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Eres libre de:
- Compartir : copiar y redistribuir el material en cualquier medio o formato
- Adaptar : remezclar, transformar y desarrollar el material
- El licenciante no puede revocar estas libertades siempre y cuando usted cumpla con los términos de la licencia.
En los siguientes términos:
- Atribución : Debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o a su uso.
- No comercial : no puede utilizar el material con fines comerciales .
- CompartirIgual — Si remezcla, transforma o construye sobre el material, debe distribuir sus contribuciones bajo la misma licencia que el original.
- Sin restricciones adicionales : no puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otros hacer algo que la licencia permite.













