Analysis of Common Bubbles in Financial MarketsUsing Mixed Causal-Noncausal VAR Modelswith Heavy-Tailed Distributions

Authors

DOI:

https://doi.org/10.70577/ASCE/643.684/2025

Keywords:

Financial bubbles, mixed VAR, financial markets, heavy tail, causality.

Abstract

This article explores the phenomenon of common financial bubbles in heterogeneous markets—such as equities, cryptocurrencies, and commodities—using advanced mixed causal-noncausal Vector Autoregression (VAR) models with heavy-tailed distributions. This approach captures not only traditional causal relationships between assets, but also complex and explosive dependencies that often emerge in contexts of speculative exuberance. The research is based on evidence that conventional linear models often fail to identify bubble episodes, primarily due to the frequent presence of extreme events in financial series. Therefore, Student's t-distributions and regime-switching methodologies are employed, which facilitate a robust analysis of local dynamics and the simultaneity of bubbles across assets. The results demonstrate that bubbles can emerge in a coordinated manner, revealing patterns of contagion and interdependence that are critical for risk management and financial policymaking. The study concludes that mixed VAR models, by integrating causal and non-causal elements under the assumption of heavy tails, represent a significant improvement for both the theoretical understanding and practical monitoring of financial stability.

Downloads

Download data is not yet available.

References

Alain Hecq, Lenard Lieb, & Sean Telg. (2016). Identification of mixed causal-noncausal models in finite samples. Annals of Economics and Statistics, 123/124, 307. https://doi.org/10.15609/annaeconstat2009.123-124.0307 DOI: https://doi.org/10.15609/annaeconstat2009.123-124.0307

Christopher G. Green. (2005). Heavy-Tailed Distributions in Finance An Empirical Study [University of Washington]. https://christopherggreen.github.io/papers/computing_prelim_2005_green.pdf

Cividino, D., Westphal, R., & Sornette, D. (2023). Multiasset financial bubbles in an agent-based model with noise traders’ herding described by an n -vector ising model. Physical Review Research, 5(1), 013009. https://doi.org/10.1103/PhysRevResearch.5.013009 DOI: https://doi.org/10.1103/PhysRevResearch.5.013009

Cubadda, G., Hecq, A., & Voisin, E. (2023). Detecting common bubbles in multivariate mixed causal–noncausal models. Econometrics, 11(1), 9. https://doi.org/10.3390/econometrics11010009 DOI: https://doi.org/10.3390/econometrics11010009

Gabriele Mingoli. (2025). Modeling Common Bubbles: A Mixed Causal Non-Causal Dynamic Factor Model [Vrije Universiteit Amsterdam and Tinbergen Institute]. https://papers.tinbergen.nl/24072.pdf

Gianluca Cubadda & Alain Hecq & Elisa Voisin. (2023). Https://ideas.repec.org/p/rtv/ceisrp/555.html. Tor Vergata University,.

Gourieroux, C., & Jasiak, J. (2017). Noncausal vector autoregressive process: Representation, identification and semi-parametric estimation. Journal of Econometrics, 200(1), 118–134. https://doi.org/10.1016/j.jeconom.2017.01.011 DOI: https://doi.org/10.1016/j.jeconom.2017.01.011

Gourieroux, C., & Jasiak, J. (2022). Nonlinear fore(Back)casting and innovation filtering for causal-noncausal var models. arXiv. https://doi.org/10.48550/ARXIV.2205.09922

Gourieroux, C., & Jasiak, J. (2025). Nonlinear fore(Back)casting and innovation filtering for causal-noncausal var models (No. arXiv:2205.09922). arXiv. https://doi.org/10.48550/arXiv.2205.09922

Gülcan, N., Boyacioğlu, N., & Özdemi̇R Höl, A. (2021). Investigation of speculative bubbles in financial markets: The example of foreign exchange market. Süleyman Demirel Üniversitesi Vizyoner Dergisi, 12(29), 176–187. https://doi.org/10.21076/vizyoner.729647 DOI: https://doi.org/10.21076/vizyoner.729647

Hafsal, K., & Durai, S. R. S. (2025). Testing for asset price bubbles: An alternative approach. Asian Economics Letters, 6(1). https://doi.org/10.46557/001c.124262 DOI: https://doi.org/10.46557/001c.124262

Hashimoto, K., Im, R., Kunieda, T., & Shibata, A. (2022). Asset bubbles, unemployment, and financial market frictions. Economic Inquiry, 60(4), 1806–1832. https://doi.org/10.1111/ecin.13101 DOI: https://doi.org/10.1111/ecin.13101

Hecq, A., & Sun, L. (2021). Selecting between causal and noncausal models with quantile autoregressions. Studies in Nonlinear Dynamics & Econometrics, 25(5), 393–416. https://doi.org/10.1515/snde-2019-0044 DOI: https://doi.org/10.1515/snde-2019-0044

Hecq, A., & Voisin, E. (2021). Forecasting bubbles with mixed causal-noncausal autoregressive models. Econometrics and Statistics, 20, 29–45. https://doi.org/10.1016/j.ecosta.2020.03.007 DOI: https://doi.org/10.1016/j.ecosta.2020.03.007

Lee, S. (2025). The ultimate guide to var models & applications. Retrieved July 20, 2025, from https://www.numberanalytics.com/blog/ultimate-guide-var-models-financial-analysis

Marc Agustí and Ignacio Vidal and Patrick Altmeyer. (2022). Deep vector autoregression for macroeconomic data. IFC-Bank of Italy Workshop, 29. https://www.bis.org/ifc/publ/ifcb59_39.pdf

Subramoney, S. D., Chinhamu, K., & Chifurira, R. (2025). Value at Risk long memory volatility models with heavy-tailed distributions for cryptocurrencies. Frontiers in Applied Mathematics and Statistics, 11, 1567626. https://doi.org/10.3389/fams.2025.1567626 DOI: https://doi.org/10.3389/fams.2025.1567626

Sune Karlsson, Stepan Mazur and Hoang Nguyen. (2021). Vector autoregression models with skewness and heavy tails. Orebro University School of Business , 37. https://arxiv.org/pdf/2105.11182

Telg. (2017). Mixed causal-noncausal models: Identification, estimation and inference [maastricht university]. https://doi.org/10.26481/dis.20171206jt DOI: https://doi.org/10.26481/dis.20171206jt

Understanding value at risk (Var) and how it’s computed. (n.d.). Investopedia. Retrieved July 20, 2025, from https://www.investopedia.com/terms/v/var.asp

Voisin, E. M. (2022). Modelling and forecasting economic time series with mixed causal-noncausal models [maastricht university]. https://doi.org/10.26481/dis.20221220ev DOI: https://doi.org/10.26481/dis.20221220ev

Published

2025-07-21

How to Cite

Quirola Quizhpi, G. C., & Inca Balseca, C. L. (2025). Analysis of Common Bubbles in Financial MarketsUsing Mixed Causal-Noncausal VAR Modelswith Heavy-Tailed Distributions. ASCE, 4(3), 643–684. https://doi.org/10.70577/ASCE/643.684/2025

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)