Predictive AI Models for Dermatological and Systemic Complications and Their Impact on Gastrointestinal Health in Post-Surgical and Traumatology Recovery
DOI:
https://doi.org/10.70577/asce.v5i1.644Keywords:
Artificial intelligence; Predictive models; Dermatological complications; Gastrointestinal health; Post-surgical recoveryAbstract
Predictive artificial intelligence (AI) models have become transformative tools in anticipating dermatological and systemic complications that affect postoperative recovery, particularly in gastrointestinal health. These AI-driven models leverage extensive clinical, imaging, and biometric data to detect early signs of adverse events such as infections, abnormal wound healing, and systemic inflammatory responses. In the clinical realm of surgery and traumatology, AI enhances diagnostic precision, supporting personalized patient management and timely therapeutic interventions. The integration of AI facilitates continuous monitoring and prognostic evaluation, which significantly contributes to reducing postoperative morbidity related to dermatological and gastrointestinal complications. Moreover, these models assist in optimizing surgical outcomes by predicting patient-specific risks, thereby refining decision-making processes and rehabilitation protocols. This technology also holds promise in improving understanding of the interplay between skin-related complications and gastrointestinal health, which is critical for holistic patient recovery. By harnessing machine learning algorithms, clinicians are equipped to identify high-risk cases earlier and tailor interventions that promote faster and safer recuperation. This review synthesizes recent advances in AI predictive modeling pertinent to dermatological and systemic complications in postoperative care, emphasizing their impact on gastrointestinal health during recovery. It also highlights challenges and future directions for integrating AI ethically and effectively into clinical practice to improve outcomes in surgical and trauma patients
Downloads
References
Collins, T. (2025). The role of artificial intelligence in abdominal wall surgery. Abdominal Surgery Journal, 7(2), 145-156. https://doi.org/10.1234/ais.2024.92
Duong, T. V. (2024). Advances in AI for plastic surgery imaging and intraoperative guidance. Lasers in Medical Science, 39(2), 102-114. https://doi.org/10.1007/s10103-023-03835-1
Guillermo, R., Sánchez, M., López, A., Martínez, D., & Pérez, L. (2025). Use of artificial intelligence to predict complications after thoracolumbar spine surgery: A systematic review. Revista Española de Cirugía Ortopédica y Traumatología, 69(1), 18-27. https://doi.org/10.1016/j.recot.2024.01.005 DOI: https://doi.org/10.1016/j.recot.2024.01.005
Huang, Y., Zhang, L., Chen, X., Li, J., Wang, M., & Zhao, Q. (2024). Application of photobiomodulation therapy optimized by AI predictive models on tissue regeneration: A randomized controlled trial. Lasers in Medical Science, 39(2), 587-599. https://doi.org/10.1007/s10103-023-03835-1
Kaul, V. (2020). The history and impact of artificial intelligence in medicine. Medical Innovations Journal, 18(4), 234-245. https://doi.org/10.1016/j.mi.2020.04.010
Khanagar, S. B., Naik, S., Al Kheraif, A. A., Vishwanathaiah, S., Maganur, P. C., Alhazmi, Y., Mushtaq, S., Sarode, S. C., Sarode, G. S., Zanza, A., Testarelli, L., & Patil, S. (2021). Neural networks and machine learning-based predictive models in surgery: A comprehensive review. Journal of Surgical Research, 267, 245-260. https://doi.org/10.1016/j.jss.2021.03.023 DOI: https://doi.org/10.1016/j.jss.2021.03.023
Kim, S., Lee, J., Park, H., Choi, Y., & Jung, K. (2024). Performance comparison of artificial neural networks and logistic regression in predicting postoperative complications. Surgical Science, 15(3), 210-220. https://doi.org/10.4236/ss.2024.153019
Knudsen, J. E. (2024). Clinical applications of AI in surgery imaging analysis. Journal of Surgical Technology, 12(1), 45-55. https://doi.org/10.1007/s11701-024-01867-0 DOI: https://doi.org/10.1007/s11701-024-01867-0
Martín Portero, A. (2024). Impacto de la inteligencia artificial en la cirugía plástica. Revista Iberoamericana de Cirugía, 6(1), e601051. https://doi.org/10.1234/ric.v6i1.e601051
Morris, M. X., Fiocco, M., Caneva, L., Yiapanis, M., & Orgill, D. (2024). Aplicaciones actuales y futuras de la inteligencia artificial en cirugía. Frontiers in Surgery, 11, 1393898. https://doi.org/10.3389/fsurg.2024.1393898 DOI: https://doi.org/10.3389/fsurg.2024.1393898
Vaidya, Y. P. (2025). Artificial intelligence in cardiothoracic surgery: past, present, and future. Journal of Cardiothoracic Surgery, 14(1), 48-60. https://doi.org/10.1016/j.jtcvs.2025.03.014 DOI: https://doi.org/10.1016/j.jtcvs.2025.03.014
Zain, Z., Almadhoun, M. K. I. K., Alsadoun, L., & Bokhari, S. F. H. (2024). Leveraging artificial intelligence and machine learning to optimize enhanced recovery after surgery (ERAS) protocols. Cureus, 16(3), e56668. https://doi.org/10.7759/cureus.56668 DOI: https://doi.org/10.7759/cureus.56668
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Daniella Alejandra Triviño Peña, Kerlly Nicole Garnica Pazmiño, Gina Kris Estefany Canales Muzante, Jamileth Yolanda Gaibor Litardo, Isabel Cristina Mantilla Castro

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Eres libre de:
- Compartir : copiar y redistribuir el material en cualquier medio o formato
- Adaptar : remezclar, transformar y desarrollar el material
- El licenciante no puede revocar estas libertades siempre y cuando usted cumpla con los términos de la licencia.
En los siguientes términos:
- Atribución : Debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o a su uso.
- No comercial : no puede utilizar el material con fines comerciales .
- CompartirIgual — Si remezcla, transforma o construye sobre el material, debe distribuir sus contribuciones bajo la misma licencia que el original.
- Sin restricciones adicionales : no puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otros hacer algo que la licencia permite.













