Details of some methods for approximating discontinuous surfaces
DOI:
https://doi.org/10.70577/asce.v5i1.640Keywords:
Non-regular functions, Approximation, Approximation methods, Rapidly varying data, Approximation of discontinuous surfaces.Abstract
The approximation of functions (surfaces) that present strong (or large) variations or vary rapidly (non-regular functions) from a set of data known (sparse and/or regularly distributed) of Lagrange-type, de , with , for an explicitly defined function (approximate) for , is a specific problem that has a significant number of applications, such as: approximation of maritime fronts from bathymetric data; approximation of surfaces with faults in the field of Geosciences; among other. Within this context, the purpose of the study is to review and present the details, in the sense of: structure, requirements, processes, functionality and results; of some of the approximation methods of non-regular functions, with emphasis on those useful for discontinuous surfaces which are caused by rapid variation in the data set. In this sense, the research was approached under a non-iterative qualitative approach, of a descriptive type, with a documentary research design; based on documents (books and articles) of a scientific nature related to the approximation methods of explicit surfaces from a set of data that present strong variations. As a result, an overview of the general processes used in the application of some of the most notable approximation methods for discontinuous surfaces was obtained. In conclusion, knowing the details of certain standard methods for approximating discontinuous surfaces allows you to choose the most appropriate approach, either by applying existing ones or by designing your own methodologies to optimize the expected results.
Downloads
References
Abancín, R. A., Dávalos, M. & Morocho, J. (2024). Detection and coverage of polygonal curves derived from vertical faults present on discontinuous surfaces. Bull. Comput. Appl. Math. (CompAMa), 12(2), 1-25. Obtenido de: https://drive.google.com/file/d/1anbfrg7zt-YGo3TaAO_niPRt7ncGNA3f/view
Alart, P., & Curnier, A. (1991). A mixed formulation for frictional contact problems prone to Newton like solution methods. Computer Methods in Applied Mechanics and Engineering, 92(3), 353-375.
Babus̆ka, I., & Banerjee, U. (2012). Stable generalized finite element method (SGFEM). Computer Methods in Applied Mechanics and Engineering, 201-204, 91-111. https://doi.org/10.1016/j.cma.2011.09.012
Billings, S. D. (2013). Geological mapping using potential fields data: A celebration of the career of Derek Fairhead. En M. C. Dentith (Ed.), Geophysical potential fields: Geology versus geometry (pp. 51-62). ASEG Extended Abstracts.
Belytschko, T., & Black, T. (1999). Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45(5), 601-620.
Belytschko, T., Lu, Y. Y., & Gu, L. (1994). Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 37(2), 229-256.
Boyd, J. P. (2001). Chebyshev and Fourier spectral methods (2nd ed.). Dover Publications.
Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6), 679-698. https://doi.org/10.1109/TPAMI.1986.4767851
Carslaw, H. S. (1930). Introduction to the theory of Fourier’s series and integrals (3rd ed., Vol. 1). Dover Publications. (Obra original publicada en 1906).
Cockburn, B., & Shu, C. W. (1989). TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework. Mathematics of Computation, 52(186), 411-435. https://doi.org/10.1090/S0025-5718-1989-0983311-4
Cockburn, B., & Shu, C. W. (1998). The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems. Journal of Computational Physics, 141(2), 199-224. https://doi.org/10.1006/jcph.1998.5892
Duchon, J. (1976). Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. Revue Française d'Automatique, Informatique, Recherche Opérationnelle. Analyse Numérique, 10(R2), 5-12. https://doi.org/10.1051/m2an/197610R200051
Franke, R. (1985). Thin plate splines with tension. Computer Aided Geometric Design, 2(1-3), 87-95. https://doi.org/10.1016/0167-8396(85)90010-7
Gibbs, J. W. (1899). Fourier’s series. Nature, 59(1539), 606.
Gout, C. Le Guyader, C. Romani, L. & Saint-Guirons, A. (2008). Approximation of surfaces with fault(s) and/or rapidly varying data, using a segmentation process, D^m-splines and the finite element method. Numerical Algorithms, 48, 67-92. DOI 10.1007/s11075-008-9177-8
Gottlieb, D., & Shu, C. W. (1997). On the Gibbs phenomenon and its resolution. SIAM Review, 39(4), 644–668. https://doi.org/10.1137/S0036144596301390
Gout, C. & Ramière, I. (2003). Surface approximation from rapidly varying bathymetric data, IEEE IGARSS, 4(IV), 2679-2681.
Harten, A., Engquist, B., Osher, S., & Chakravarthy, S. R. (1987). Uniformly high order accurate essentially non-oscillatory schemes, III. Journal of Computational Physics, 71(2), 231-303. https://doi.org/10.1016/0021-9991(87)90031-3
Hesthaven, J. S., & Warburton, T. (2008). Nodal discontinuous Galerkin methods: Algorithms, analysis, and applications. Springer. https://doi.org/10.1007/978-0-387-72067-8
Hinkley, D. V. (1971). Inference about the change-point in a sequence of random variables. Biometrika, 57(1), 1-17. https://doi.org/10.1093/biomet/57.1.1
Lions, P. L. (1990). On the Schwarz alternating method. II: Stochastic interpretation and order properties. En R. Glowinski, G. H. Golub, G. A. Meurant & J. Périaux (Eds.), Domain decomposition methods for partial differential equations (pp. 47-70). SIAM.
Liu, X. D., Osher, S., & Chan, T. (1994). Weighted essentially non-oscillatory schemes. Journal of Computational Physics, 115(1), 200-212.
Loader, C. (1999). Local regression and likelihood. Springer-Verlag.
Mallat, S., & Zhong, S. (1992). Characterization of signals from multiscale edges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(7), 710-732. https://doi.org/10.1109/34.142909
Melenk, J. M., & Babuška, I. (1996). The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 139(1-4), 289-314. https://doi.org/10.1016/S0045-7825(96)01087-0
Ortiz, M., & Pandolfi, A. (1999). Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. International Journal for Numerical Methods in Engineering, 44(9), 1267-1282.
Parra, M.C. (1999). Sobre detección de discontinuidades y aproximación de funciones no regulares. Tesis de Doctorado. España: Universidad de Zaragoza.
Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1/2), 100-115. https://doi.org/10.2307/2333009
Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629-639. https://doi.org/10.1109/34.56205
Reed, W. H., & Hill, T. R. (1973). Triangular mesh methods for the neutron transport equation (Tech. Rep. LA-UR-73-479). Los Alamos Scientific Laboratory.
Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1-4), 259-268. https://doi.org/10.1016/0167-2789(92)90242-F
Schweikert, D. G. (1966). An interpolation curve using a spline in tension. Journal of Mathematics and Physics, 45(1-4), 312-317. https://doi.org/10.1002/sapm1966451312
Strang, G., & Nguyen, T. (1996). Wavelets and filter banks. Wellesley-Cambridge Press.
Strouboulis, T., Babuška, I., & Copps, K. (2000). The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering, 181(1-3), 43-69. https://doi.org/10.1016/S0045-7825(99)00072-9
Strouboulis, T., Copps, K., & Babuška, I. (2001). The Generalized Finite Element Method: An example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering, 47(8), 1401-1417. https://doi.org/10.1002/1097-0207(20010320)47:8<1401::AID-NME1024>3.0.CO;2-0
Strouboulis, T., Babuška, I., & Copps, K. (2001). The Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering, 190(32-33), 4081-4193. https://doi.org/10.1016/S0045-7825(00)00354-4
Babus̆ka, I., Strouboulis, T., & Copps, K. (2003). The Generalized Finite Element Method. John Wiley & Sons. https://doi.org/10.1002/0471721219
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ramón Antonio Abancín Ospina, Raúl Manzanilla Morillo

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Eres libre de:
- Compartir : copiar y redistribuir el material en cualquier medio o formato
- Adaptar : remezclar, transformar y desarrollar el material
- El licenciante no puede revocar estas libertades siempre y cuando usted cumpla con los términos de la licencia.
En los siguientes términos:
- Atribución : Debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o a su uso.
- No comercial : no puede utilizar el material con fines comerciales .
- CompartirIgual — Si remezcla, transforma o construye sobre el material, debe distribuir sus contribuciones bajo la misma licencia que el original.
- Sin restricciones adicionales : no puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otros hacer algo que la licencia permite.













