Application of Artificial Intelligence and Agromatics in the Cybersecurity of Agricultural Infrastructures in Regional Contexts
DOI:
https://doi.org/10.70577/asce.v5i1.675Keywords:
Digital agriculture, Cybersecurity, Agricultural Information systems, Data protection, Rural digital transformationAbstract
The increasing digitalization of the agricultural sector has intensified dependence on intelligent infrastructures based on IoT, edge computing, and artificial intelligence, transforming traditional production systems into interconnected agro-digital ecosystems. However, this technological evolution significantly expands the exposure surface to cyber threats, particularly in rural environments where infrastructure and digital governance present structural limitations. This study proposes and validates a hybrid architecture based on deep learning models, edge computing, and decentralized integrity mechanisms to strengthen cybersecurity in regional agricultural infrastructures. A simulated environment (testbed) was developed integrating agricultural IoT sensors and critical networks, evaluating CNN–LSTM models and autoencoders trained with the CIC-DDoS2019 and TON-IoT datasets. The results demonstrate detection levels exceeding 98%, with latency values suitable for operation in environments with limited connectivity. The findings confirm that integrating artificial intelligence at the edge enhances operational resilience and reduces reliance on centralized infrastructure, which is strategically relevant for rural regions undergoing digital transformation. It is concluded that cybersecurity must be incorporated as a structural component of smart agriculture, articulating technological innovation, data governance, and sustainable development.
Downloads
References
Aguirre-Munizaga, M., Chang-Zorilla, S., Rivera, D. V., & Vera-Lucio, N. (2025). Implementation of a Web Application for Estimating Cocoa Productivity Using Machine Learning. Information Technology and Systems, Lecture Notes in Networks and Systems, 1447, 382-390. https://doi.org/10.1007/978-3-031-93109-3_34 DOI: https://doi.org/10.1007/978-3-031-93109-3_34
Aguirre-Munizaga, M., Lagos-Ortiz, K., Vergara-Lozano, V., Real-Avilés, K., Vásquez-Bermudez, M., Sinche-Guzmán, A., & Hernández-Rosas, J. (2019). Analysis of Atmospheric Monitoring Data Through Micro-meteorological Stations, as a Crowdsourcing Tool for Technology Integration. En Á. Rocha & M. Serrhini (Eds.), Information Systems and Technologies to Support Learning (Vol. 111, pp. 181-187). Springer International Publishing. https://doi.org/10.1007/978-3-030-03577-8_21 DOI: https://doi.org/10.1007/978-3-030-03577-8_21
Alahe, M. A., Wei, L., Chang, Y., Gummi, S. R., Kemeshi, J., Yang, X., Won, K., & Sher, M. (2024). Cyber security in smart agriculture: Threat types, current status, and future trends. Computers and Electronics in Agriculture, 226, 109401. https://doi.org/10.1016/j.compag.2024.109401 DOI: https://doi.org/10.1016/j.compag.2024.109401
Alahmadi, A. N., Rehman, S. U., Alhazmi, H. S., Glynn, D. G., Shoaib, H., & Solé, P. (2022). Cyber-Security Threats and Side-Channel Attacks for Digital Agriculture. Sensors, 22(9), 3520. https://doi.org/10.3390/s22093520 DOI: https://doi.org/10.3390/s22093520
Aldhyani, T. H. H., & Alkahtani, H. (2023). Cyber Security for Detecting Distributed Denial of Service Attacks in Agriculture 4.0: Deep Learning Model. Mathematics, 11(1), 233. https://doi.org/10.3390/math11010233 DOI: https://doi.org/10.3390/math11010233
Alvarez, L. T. G., Martínez, L. R. V., Cubides, J. D. A., & Bayona, S. M. (2022). Implementación de la agricultura de precisión a través del desarrollo de sistemas productivos en áreas protegidas o de conservación para optimizar la producción de cultivos. Una revisión sistemática de literatura. Cuaderno activa, 14(1), Article 1. https://doi.org/10.53995/20278101.1011 DOI: https://doi.org/10.53995/20278101.1011
Castillo Gómez, J. (2023). Ingeniería de Software para la Transformación Digital: Retos, Tendencias y Oportunidades Profesionales en el Ecuador. Revista internacional de Investigación y Desarrollo Global, 2(2), 66-80. https://doi.org/10.64041/riidg.v2i2.40 DOI: https://doi.org/10.64041/riidg.v2i2.40
Dayioğlu, M. A., & Turker, U. (2021). Digital Transformation for Sustainable Future - Agriculture 4.0: A review. Tarım Bilimleri Dergisi. https://doi.org/10.15832/ankutbd.986431 DOI: https://doi.org/10.15832/ankutbd.986431
Demestichas, K., Peppes, N., & Alexakis, T. (2020). Survey on Security Threats in Agricultural IoT and Smart Farming. Sensors, 20(22), 6458. https://doi.org/10.3390/s20226458 DOI: https://doi.org/10.3390/s20226458
Enhancing Agricultural Cybersecurity: Leveraging Deep Learning and Large Language Models for Smart Farming Protection. (2025, abril 25). Advances in Computational Intelligence and Robotics, 307-338. https://doi.org/10.4018/979-8-3373-3296-3.ch010 DOI: https://doi.org/10.4018/979-8-3373-3296-3.ch010
Facuy, J., Aguirre-Munizaga, M., Pasini, A., Estévez, E., & Moran-Castro, C. (2026). Validation of an Ambient Intelligence System Applied to the Prediction of Electronic Waste in Smart Cities. En R. Valencia-Garcia, P. Alvarez-Muñoz, J. Tarquino Calderon, V. Vergara-Lozano, L. Ortega-Ponce, A. L. Pico-Aguilar, & B. M. Vásconez-García (Eds.), Technologies and Innovation (Vol. 2776, pp. 259-272). Springer Nature Switzerland. https://doi.org/10.1007/978-3-032-11494-5_17 DOI: https://doi.org/10.1007/978-3-032-11494-5_17
Facuy Toledo, D. P. (2024). Aplicación de sensores IoT e inteligencia artificial para la optimización del riego en cultivos agroecológicos. Revista internacional de Investigación y Desarrollo Global, 3(2), 36-52. https://doi.org/10.64041/riidg.v3i2.23 DOI: https://doi.org/10.64041/riidg.v3i2.23
FAO. (2020). Agricultura 4.0—Robótica agrícola y equipos automatizados para la producción agrícola sostenible. https://openknowledge.fao.org/items/240ac76e-0fbd-46fa-92a6-87c1835d4f64
Freyhof, M., Grispos, G., Pitla, S., & Mahoney, W. (2025). Investigating The Implications of Cyberattacks Against Precision Agricultural Equipment. International Conference on Cyber Warfare and Security, 20, 93-104. https://doi.org/10.34190/iccws.20.1.3229 DOI: https://doi.org/10.34190/iccws.20.1.3229
Gupta, M., Abdelsalam, M., Khorsandroo, S., & Mittal, S. (2020). Security and Privacy in Smart Farming: Challenges and Opportunities. IEEE Access, 8, 34564-34584. https://doi.org/10.1109/ACCESS.2020.2975142 DOI: https://doi.org/10.1109/ACCESS.2020.2975142
Hasan, Md. M., Islam, M. U., & Sadeq, M. J. (2022). Towards technological adaptation of advanced farming through AI, IoT, and Robotics: A Comprehensive overview (Versión 1). arXiv. https://doi.org/10.48550/ARXIV.2202.10459 DOI: https://doi.org/10.1201/9781003299059-2
Hashmi, A. U. H., Mir, G. U., Sattar, K., Ullah, S. S., Alroobaea, R., Iqbal, J., & Hussain, S. (2024). Effects of IoT Communication Protocols for Precision Agriculture in Outdoor Environments. IEEE Access, 12, 46410-46421. https://doi.org/10.1109/ACCESS.2024.3381522 DOI: https://doi.org/10.1109/ACCESS.2024.3381522
Javaid, M., Haleem, A., Khan, I. H., & Suman, R. (2023). Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Advanced Agrochem, 2(1), 15-30. https://doi.org/10.1016/j.aac.2022.10.001 DOI: https://doi.org/10.1016/j.aac.2022.10.001
Kaliyaperumal, P., Karuppiah, T., Perumal, R., Thirumalaisamy, M., Balusamy, B., & Benedetto, F. (2025). Enhancing cybersecurity in Agriculture 4.0: A high-performance hybrid deep learning-based framework for DDoS attack detection. Computers and Electrical Engineering, 126, 110431. https://doi.org/10.1016/j.compeleceng.2025.110431 DOI: https://doi.org/10.1016/j.compeleceng.2025.110431
Kumar, S., & Faisal, M. (2024). Critical Review of Cybersecurity Risks in Precision Agriculture. 2024 Second International Conference Computational and Characterization Techniques in Engineering & Sciences (IC3TES), 1-7. https://doi.org/10.1109/ic3tes62412.2024.10877611 DOI: https://doi.org/10.1109/IC3TES62412.2024.10877611
Martin Otieno. (2023). An extensive survey of smart agriculture technologies: Current security posture. World Journal of Advanced Research and Reviews, 18(3), 1207-1231. https://doi.org/10.30574/wjarr.2023.18.3.1241 DOI: https://doi.org/10.30574/wjarr.2023.18.3.1241
Meza Nieto, A. K. (2024). Análisis y visualización de datos climáticos en el cantón Guayaquil: Tendencias, riesgos y proyecciones ambientales. Revista internacional de Investigación y Desarrollo Global, 3(2), 18-35. https://doi.org/10.64041/riidg.v3i2.22 DOI: https://doi.org/10.64041/riidg.v3i2.22
Mitra, A., Vangipuram, S. L. T., Bapatla, A. K., Bathalapalli, V. K. V. V., Mohanty, S. P., Kougianos, E., & Ray, C. (2022). Everything You wanted to Know about Smart Agriculture (Versión 1). arXiv. https://doi.org/10.48550/ARXIV.2201.04754
Neira, E. G. C., Urgilés, C. H. F., Urgilés, C. M. F., Espinoza, J. J. S., & Egas, M. B. R. (2023). Diagnóstico y línea base de los activos de información e infraestructura crítica de ciberseguridad del estado ecuatoriano. Pro Sciences: Revista de Producción, Ciencias e Investigación, 7(49), 101-119. https://doi.org/10.29018/issn.2588-1000vol7iss49.2023pp101-119
Rahaman, M., Lin, C.-Y., Pappachan, P., Gupta, B. B., & Hsu, C.-H. (2024). Privacy-Centric AI and IoT Solutions for Smart Rural Farm Monitoring and Control. Sensors, 24(13), 4157. https://doi.org/10.3390/s24134157 DOI: https://doi.org/10.3390/s24134157
Romero, J. C. R. (2024). Tecnologías de la información y comunicaciones implementadas en la agroindustria en el Ecuador. Revista Internacional de Estudios en Ciencias Administrativas STRATEGOS, 4(1), Article 1. https://doi.org/10.53591/strategos.v4i1.1846 DOI: https://doi.org/10.53591/strategos.v4i1.1846
Santos Vidal, M. D. (2022). Marco regulatorio de la ciberseguridad y ciberdefensa dentro de la sociedad de la información y el conocimiento: Respuestas del Estado ecuatoriano en el período 2013-2022 [masterThesis, Quito, EC: Universidad Andina Simón Bolívar, Sede Ecuador]. http://repositorio.uasb.edu.ec/handle/10644/9076
Tychola, K. A., & Rantos, K. (2025). Cyberthreats and Security Measures in Drone-Assisted Agriculture. Electronics, 14(1), 149. https://doi.org/10.3390/electronics14010149 DOI: https://doi.org/10.3390/electronics14010149
Urjilez, H., Valdez, D., García, Y., Aguirre, M., & Mancero, D. (2025). Advances in Predictive Modeling in Fruit Crops: Mobile Applications. En A. Rocha, C. Ferrás, & H. Calvo (Eds.), Information Technology and Systems (Vol. 1447, pp. 354-363). Springer Nature Switzerland. https://doi.org/https://doi.org/10.1007/978-3-031-93109-3_31 DOI: https://doi.org/10.1007/978-3-031-93109-3_31
Valle-Lituma, C., Aguirre-Munizaga, M., Salous, A. E., & Cardenas-Rodriguez, M. (2026). Systematic Review of Artificial Intelligence Tools Applied to the Classification, Quality Control, and Shelf Life Prediction of Post-harvest Agricultural Products (2000–2025). En R. Valencia-Garcia, P. Alvarez-Muñoz, J. Tarquino Calderon, V. Vergara-Lozano, L. Ortega-Ponce, A. L. Pico-Aguilar, & B. M. Vásconez-García (Eds.), Technologies and Innovation (Vol. 2776, pp. 34-50). Springer Nature Switzerland. https://doi.org/10.1007/978-3-032-11494-5_3 DOI: https://doi.org/10.1007/978-3-032-11494-5_3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Angel Alberto Arce Ramírez, Daniel Adolfo Bustamante Villamar, Anggie Katherine Meza Nieto

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Eres libre de:
- Compartir : copiar y redistribuir el material en cualquier medio o formato
- Adaptar : remezclar, transformar y desarrollar el material
- El licenciante no puede revocar estas libertades siempre y cuando usted cumpla con los términos de la licencia.
En los siguientes términos:
- Atribución : Debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o a su uso.
- No comercial : no puede utilizar el material con fines comerciales .
- CompartirIgual — Si remezcla, transforma o construye sobre el material, debe distribuir sus contribuciones bajo la misma licencia que el original.
- Sin restricciones adicionales : no puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otros hacer algo que la licencia permite.













