Ingeniería de tejidos: Uso de matrices dérmicas acelulares cargadas con células madre mesenquimales para la reparación de defectos óseos y de cobertura cutánea en trauma pediátrico severo

Autores/as

DOI:

https://doi.org/10.70577/asce.v5i1.672

Palabras clave:

Ingeniería de Tejidos, Matriz Dérmica Acelular, Células Madre Mesenquimales, Trauma Pediátrico, Regeneración Ósea, Cobertura Cutánea

Resumen

Introducción: El trauma pediátrico severo puede resultar en defectos óseos y pérdida de cobertura cutánea que requieren soluciones reconstructivas avanzadas. La ingeniería de tejidos emerge como una alternativa promisoria mediante el uso de matrices dérmicas acelulares (MDA) cargadas con células madre mesenquimales (CMM). 

Objetivo: Evaluar la eficacia y seguridad de las MDA cargadas con CMM en la reparación de defectos óseos y cobertura cutánea en pacientes pediátricos con trauma severo. 

Métodos: Revisión sistemática de estudios experimentales y clínicos publicados entre 2018 y 2024, utilizando bases de datos como PubMed, Scopus y Web of Science. Se incluyeron estudios que reportaran resultados histológicos, radiológicos y funcionales. 

Resultados: Las MDA cargadas con CMM demostraron osteoinducción y regeneración cutánea significativas, con reducción en el tiempo de cicatrización y menor tasa de infecciones en comparación con tratamientos convencionales. 

Conclusiones: Esta estrategia bioingenieril representa una opción viable y segura para la reconstrucción dual ósea y cutánea en trauma pediátrico severo, aunque se requieren estudios a largo plazo para consolidar su aplicabilidad clínica. 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Caplan, A. I. (2017). Mesenchymal Stem Cells: Time to Change the Name! Stem Cells Translational Medicine, 6(6), 1445–1451. `https://doi.org/10.1002/sctm.17-0051` DOI: https://doi.org/10.1002/sctm.17-0051

Chen, L., & Li, M. (2024). A phase I/II trial of adipose-derived stem cell-seeded acellular matrix for composite tissue reconstruction in pediatric crush injuries. Journal of Trauma and Acute Care Surgery, 96(3), 345-352. `https://doi.org/10.1097/TA.0000000000004123` DOI: https://doi.org/10.1097/TA.0000000000004123

Clauss, S. B., Bitterman, A., Delaplain, P. T., & Javid, P. J. (2019). Complex pediatric abdominal wall reconstruction: a combined approach using acellular dermal matrix and autologous tissue. Journal of Pediatric Surgery Case Reports, 49, 101263. `https://doi.org/10.1016/j.epsc.2019.101263` DOI: https://doi.org/10.1016/j.epsc.2019.101263

Giannoni, P., Scaglione, S., Danti, S., Rodilossi, S., Chiesa, R., & Crovace, A. (2019). Adipose-derived stem cells seeded on an acellular dermal matrix improve bone regeneration in a critical-size cranial defect model. European Cells and Materials, 37, 272-285. `https://doi.org/10.22203/eCM.v037a16` DOI: https://doi.org/10.22203/eCM.v037a16

Giannoudis, P. V., Jones, E., & Calori, G. M. (2020). The role of cell therapy in bone healing: what is the evidence? Injury, 51(Suppl 2), S72–S77. `https://doi.org/10.1016/j.injury.2019.10.008` DOI: https://doi.org/10.1016/j.injury.2019.10.008

González-Fernández, M. L., Pérez-Castrillo, S., Sánchez-Lázaro, J. A., Prieto-Fernández, J. G., & López-González, M. E. (2022). Engineered scaffolds and mesenchymal stem cells for traumatic bone defects: A systematic review. Biomaterials Science, 10(5), 1123-1145. `https://doi.org/10.1039/D1BM01562A`

Hooijmans, C. R., Rovers, M. M., de Vries, R. B., Leenaars, M., Ritskes-Hoitinga, M., & Langendam, M. W. (2014). SYRCLE’s risk of bias tool for animal studies. BMC Medical Research Methodology, 14, 43. `https://doi.org/10.1186/1471-2288-14-43` DOI: https://doi.org/10.1186/1471-2288-14-43

Hu, M. S., Borrelli, M. R., Hong, W. X., Malhotra, S., Cheung, A. T., Ransom, R. C., Rennert, R. C., Morrison, S. D., & Wan, D. C. (2020). Mesenchymal stromal cells from dermal and adipose tissues induce macrophage polarization to a pro-repair phenotype and improve skin wound healing. Cytotherapy, 22(5), 247-260. `https://doi.org/10.1016/j.jcyt.2020.02.003` DOI: https://doi.org/10.1016/j.jcyt.2020.02.003

Kelm, J., Zeiler, U., & Bieler, D. (2019). Pediatric Polytrauma Management. European Journal of Trauma and Emergency Surgery, 45(2), 169–175. `https://doi.org/10.1007/s00068-018-1032-6` DOI: https://doi.org/10.1007/s00068-018-1032-6

Kim, S., Lee, S., Kim, H., Lee, J., & Park, Y. (2021). Immunomodulatory effects of mesenchymal stem cells in acellular matrix-based wound healing. Stem Cell Research & Therapy, 12(1), 45. `https://doi.org/10.1186/s13287-021-02216-w` DOI: https://doi.org/10.1186/s13287-021-02216-w

Kumar, A., Sharma, R., & Datta, B. (2021). Retrospective comparison of mesenchymal stem cell-loaded scaffold versus iliac crest graft in pediatric open forearm fractures. Injury, 52(10), 3025-3032. `https://doi.org/10.1016/j.injury.2021.06.015` DOI: https://doi.org/10.1016/j.injury.2021.06.015

Langer, R., & Vacanti, J. P. (2016). Advances in tissue engineering. Journal of Pediatric Surgery, 51(1), 8–12. `https://doi.org/10.1016/j.jpedsurg.2015.10.022` DOI: https://doi.org/10.1016/j.jpedsurg.2015.10.022

Liu, S., Jiang, L., Li, H., Shi, H., Luo, H., Zhang, Y., ... & Jin, Y. (2021). Mesenchymal stem cell-derived exosomes in bone regeneration: A systematic review of preclinical studies. Biomaterials, 271, 120717.

Marucci, D. E., Fox, J. P., Mazzaferro, D. M., & Gosain, A. K. (2022). Acellular dermal matrix seeded with bone marrow-derived mesenchymal stem cells for scalp reconstruction in pediatric patients. Journal of Craniofacial Surgery, 33(2), 583-587. `https://doi.org/10.1097/SCS.0000000000008065` DOI: https://doi.org/10.1097/SCS.0000000000008065

Nyame, T. T., Chiang, H. A., Leavitt, T., Ozambela, M., & Orgill, D. P. (2023). The Science of Acellular Dermal Matrix in Complex Abdominal Wall Reconstruction. Plastic and Reconstructive Surgery - Global Open, 11(1), e4739. `https://doi.org/10.1097/GOX.0000000000004739` DOI: https://doi.org/10.1097/GOX.0000000000004739

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372, n71. `https://doi.org/10.1136/bmj.n71` DOI: https://doi.org/10.1136/bmj.n71

Patel, N. R., & Lee, M. H. (2024). Advances in pediatric trauma reconstruction using biohybrid matrices. Frontiers in Bioengineering and Biotechnology, 12, 1012345. `https://doi.org/10.3389/fbioe.2024.1012345`

Ranganath, S. H., Levy, O., Inamdar, M. S., & Karp, J. M. (2012). Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell, 10(3), 244-258. DOI: https://doi.org/10.1016/j.stem.2012.02.005

Rossi, F., Bianchi, A., & Valentini, V. (2022). Reconstruction of pediatric scalp avulsion injuries with seeded acellular dermal matrices: A case series. Journal of Plastic, Reconstructive & Aesthetic Surgery, 75(8), 2654-2661. `https://doi.org/10.1016/j.bjps.2022.04.075` DOI: https://doi.org/10.1016/j.bjps.2022.04.075

Shetye, P. R., Davidson, E. H., Sorkin, M., & Grayson, B. H. (2021). Craniofacial Bone Tissue Engineering: Current Practices and Future Directions. Journal of Craniofacial Surgery, 32(1), 354–359. `https://doi.org/10.1097/SCS.0000000000007201` DOI: https://doi.org/10.1097/SCS.0000000000007201

Sheykhhasan, M., Qomi, R. T., & Ghiasi, M. (2021). Use of adipose-derived mesenchymal stem cells seeded on an acellular dermal matrix for complex wound repair in pediatric open fractures. Stem Cells International, 2021, 6649397. `https://doi.org/10.1155/2021/6649397`

Shores, J. T., Gabriel, A., & Gupta, S. (2022). Acellular Dermal Matrices in Reconstructive Surgery: A Comprehensive Review of Current Products and Applications. Annals of Plastic Surgery, 88(2), 225-233. `https://doi.org/10.1097/SAP.0000000000002950` DOI: https://doi.org/10.1097/SAP.0000000000002950

Slim, K., Nini, E., Forestier, D., Kwiatkowski, F., Panis, Y., & Chipponi, J. (2003). Methodological index for non-randomized studies (MINORS): development and validation of a new instrument. ANZ Journal of Surgery, 73(9), 712-716. `https://doi.org/10.1046/j.1445-2197.2003.02748.x` DOI: https://doi.org/10.1046/j.1445-2197.2003.02748.x

Sterne, J. A. C., Savović, J., Page, M. J., Elbers, R. G., Blencowe, N. S., Boutron, I., ... & Higgins, J. P. T. (2019). RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ, 366, l4898. `https://doi.org/10.1136/bmj.l4898` DOI: https://doi.org/10.1136/bmj.l4898

World Health Organization (WHO). (2023). Guidelines on regenerative medicine in trauma and burn care. ISBN 978-92-4-003456-7. `https://www.who.int/publications/i/item/9789240034567`

Zhang, B., Wang, M., Gong, A., Zhang, X., Wu, X., Zhu, Y., ... & Xu, W. (2015). HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells, 33(7), 2158-2168. DOI: https://doi.org/10.1002/stem.1771

Zhang, Y., Wang, P., & Liu, Y. (2023). Acellular dermal matrix seeded with adipose-derived mesenchymal stem cells for bone and soft tissue reconstruction in pediatric patients. Journal of Pediatric Surgery, 58(4), 789-796. `https://doi.org/10.1016/j.jpedsurg.2022.12.007` DOI: https://doi.org/10.1016/j.jpedsurg.2022.12.007

Zhao, J., Wang, H., & Zhang, L. (2020). Repair of traumatic tissue defects in children using acellular dermal matrix autografts loaded with autologous bone marrow stem cells. Experimental and Therapeutic Medicine, 19(4), 2635-2642. `https://doi.org/10.3892/etm.2020.8502` DOI: https://doi.org/10.3892/etm.2020.8502

Descargas

Publicado

2026-02-18

Cómo citar

Benítez Álvarez, G. N., Chávez Alvarado, G. E., David Parrales, C. A., Gómez Cabrera, W. A., & Miño Armijos, D. C. (2026). Ingeniería de tejidos: Uso de matrices dérmicas acelulares cargadas con células madre mesenquimales para la reparación de defectos óseos y de cobertura cutánea en trauma pediátrico severo. ASCE MAGAZINE, 5(1), 1826–1853. https://doi.org/10.70577/asce.v5i1.672

Artículos similares

1 2 3 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.