Risks and prevention in field activities with transformers: statistical modeling of the probability of accidents and fatalities

Authors

DOI:

https://doi.org/10.70577/ASCE/2107.2124/2025

Keywords:

Models, Prediction, Risks, Security, Transformers.

Abstract

This study analyzes electrical risks during transformer testing, a critical aspect in electrical engineering to ensure the safety of both equipment and personnel. Predictive models such as Decision Tree and Logistic Regression were evaluated, showing limited performance (23% and 29.1% overall accuracy, respectively). These models presented significant difficulties in correctly classifying minority classes, evidencing problems associated with data imbalance and a lack of sophistication to capture complex patterns in challenging environments. Furthermore, a bias toward majority categories was observed, compromising their practical applicability in critical systems such as substation protection or internal fault analysis using advanced techniques such as Frequency Response Analysis (FRA). The discussion highlights the need to improve these models through strategies such as oversampling (SMOTE), selection of more relevant features, and the implementation of advanced algorithms such as XGBoost or artificial neural networks. From a practical perspective, the importance of integrating theoretical knowledge with advanced machine learning tools to anticipate risk patterns and mitigate operational failures is emphasized. Recommendations include addressing class imbalance, performing more in-depth variable analyses, and complementing models with interpretation techniques such as SHAP or LIME. Finally, it is concluded that a multidisciplinary approach combining physical testing with predictive models is crucial to optimize safety in electrical systems.

 

Downloads

Download data is not yet available.

References

Alenezi, M., Anayi, F., Packianather, M., & Shouran, M. (2024). Enhancing transformer protection: A machine learning framework for early fault detection. Sustainability, 16(23), 10759. https://doi.org/10.3390/su162310759 DOI: https://doi.org/10.3390/su162310759

Aponte-Mayor, G., Gómez-Luna, E., & Jaramillo, A. (2023). Importancia estratégica de un sistema de alta corriente en baja tensión en el sector eléctrico colombiano. Información Tecnológica, 34(1), 141-150. https://dx.doi.org/10.4067/s0718-07642023000100141 DOI: https://doi.org/10.4067/S0718-07642023000100141

Azevedo, A. S., Duarte, J., & Machado e Moura, A. (2020). Minimization of electrical risks in activities in very high voltage transmission lines. En A. Arezes (Ed.), Occupational and Environmental Safety and Health II (pp. 13–20). Springer. https://doi.org/10.1007/978-3-030-41486-3_2 DOI: https://doi.org/10.1007/978-3-030-41486-3_2

Blockeel, H., Devos, L., Frénay, B., Nanfack, G., & Nijssen, S. (2023). Decision trees: from efficient prediction to responsible AI. Frontiers in artificial intelligence, 6, https://doi.org/10.3389/frai.2023.1124553 DOI: https://doi.org/10.3389/frai.2023.1124553

Charbuty, B., & Abdulazeez, A. (2021). Classification based on decision tree algorithm for machine learning. Journal of applied science and technology trends, 2(01), 20-28. https://doi.org/10.38094/jastt20165 . DOI: https://doi.org/10.38094/jastt20165

Das, A. (2024). Logistic regression. In Encyclopedia of quality of life and well-being research (pp. 3985-3986). Cham: Springer International Publishing. http://dx.doi.org/10.1007/978-3-031-17299-1_1689 DOI: https://doi.org/10.1007/978-3-031-17299-1_1689

Gamel, S. A., Ghoneim, S. S., & Sultan, Y. A. (2024). Improving the accuracy of diagnostic predictions for power transformers by employing a hybrid approach combining SMOTE and DNN. Computers and Electrical Engineering, 117, 109232. https://doi.org/10.1016/j.compeleceng.2024.109232 DOI: https://doi.org/10.1016/j.compeleceng.2024.109232

García, D., Vásquez, H., & Holguín, A. (2020). Prototipo electrónico para el calentamiento a baja frecuencia de transformadores eléctricos monofásicos. Información Tecnológica, 31(5), 59-70. https://doi.org/10.4067/s0718-07642020000500059 DOI: https://doi.org/10.4067/S0718-07642020000500059

Han, Y., Wei, Z., & Huang, G. (2024). An imbalance data quality monitoring based on SMOTE-XGBOOST supported by edge computing. Scientific Reports, 14(1), 10151. https://doi.org/10.1038/s41598-024-60600-x DOI: https://doi.org/10.1038/s41598-024-60600-x

Hussein, R. I. H., Gökşenli, N., Bektaş, E., Teke, M., Tümay, M., Yaseen, E. S. Y., ... & Taha, T. A. (2024). Enhanced transformer protection using fuzzy-logic-integrated differential relays: a comparative study with rule-based methods. Journal of Robotics and Control (JRC), 5(5), 1299-1310. http://doi.org/10.18196/jrc.v5i5.21937

Khan, M. I., Ahmad, B., Shoaib, M., Anwar, S., & Ali, Z. (2025). Artificial Intelligence and Machine Learning Applications in Smart Infrastructure and Electrical Systems. The Critical Review of Social Sciences Studies, 3(1), 2005-2016. https://doi.org/10.59075/z5e95467 DOI: https://doi.org/10.59075/v664jq68

Kolukisa, B., Dedeturk, B. K., Hacilar, H., & Gungor, V. C. (2024). An efficient network intrusion detection approach based on logistic regression model and parallel artificial bee colony algorithm. Computer Standards & Interfaces, 89, 103808. http://dx.doi.org/10.1016/j.csi.2023.103808 DOI: https://doi.org/10.1016/j.csi.2023.103808

Kucukkaya, B., & Pamuk, N. (2024). Theoretical and practical analysis of parallel operating conditions of two transformers with different relative short circuit voltages. Sigma Journal of Engineering and Natural Sciences, 42(3), 701-713. http://dx.doi.org/10.14744/sigma.2023.00025 DOI: https://doi.org/10.14744/sigma.2023.00025

Li, J., Chen, F., & Li, S. (2022). Correlation analysis and prevention of electrocution risk factors in the construction industry. Archives of Civil Engineering, 68(4), 537-554. http://dx.doi.org/10.24425/ace.2022.143053 DOI: https://doi.org/10.24425/ace.2022.143053

López Serrazina, R. H., Jiménez Ayala, J., & Catató Alis, J. (2023). Desarrollo y validación de un nuevo método de evaluación de riesgos eléctricos para la prevención y mitigación de daños a personas e instalaciones. Ingeniare: Revista Chilena de Ingeniería, 31(1), 204–214. https://doi.org/10.4067/S0718-33052023000100204 DOI: https://doi.org/10.4067/S0718-33052023000100204

Luo, J., Mozaffari, K., Lehman, B., & Amirabadi, M. (2023). Control Strategies for Parallel Capacitive-Link Universal Converters with Low Voltage Stress and Current Stress. In 2023 IEEE Energy Conversion Congress and Exposition (ECCE) (pp. 2483-2490). IEEE. http://dx.doi.org/10.1109/ECCE53617.2023.10362819 DOI: https://doi.org/10.1109/ECCE53617.2023.10362819

Miao, J., & Zhu, W. (2022). Precision–recall curve (PRC) classification trees. Evolutionary intelligence, 15(3), 1545-1569. https://link.springer.com/article/10.1007/s12065-021-00565-2 DOI: https://doi.org/10.1007/s12065-021-00565-2

Nica, G., Pavel, F., & Hojda, G. (2023). A fast nonlinear dynamic analysis automated approach to produce fragility curves for 3D RC frames. Engineering Structures, 281, 115695. https://doi.org/10.1016/j.engstruct.2023.115695 DOI: https://doi.org/10.1016/j.engstruct.2023.115695

Ray, P. K., Sahoo, H. K., Mohanty, A., Bhutto, J. K., Barnawi, A. B., & Alshaya, A. A. (2024). Robust H-infinity filter and PSO-SVM based monitoring of power quality disturbances system. IEEE Access, 12, 39041-39057. http://dx.doi.org/10.1109/ACCESS.2024.3367727 DOI: https://doi.org/10.1109/ACCESS.2024.3367727

Ro, K. M., Kim, M. S., & Lee, Y. H. (2021). A simplified approach to modeling vertically irregular structures for dynamic assessment. Journal Of Asian Architecture And Building Engineering, 21(6), 2320-2329. https://doi.org/10.1080/13467581.2021.1971682 DOI: https://doi.org/10.1080/13467581.2021.1971682

Rodríguez Suárez, J. M., González Sifuentes, K., Trujillo Guajardo, L. A., & Cantú Gutiérrez, P. V. (2023). Análisis de problemática en sistemas eléctricos industriales: arco eléctrico. Multidisciplinas de la Ingeniería, 5(6). https://doi.org/10.29105/mdi.v5i06.126 DOI: https://doi.org/10.29105/mdi.v5i06.126

Rojas, C. and Martínez, S. (2021). Transformadores de potencia con doble núcleo: análisis de respuesta a la frecuencia. Ciencia Nicolaita, (82). https://doi.org/10.35830/cn.vi82.543 DOI: https://doi.org/10.35830/cn.vi82.543

Rubbo, G. E., Corasaniti, V. F., & Barbieri, M. B. (2020). Estudio de arco eléctrico en una subestación eléctrica. IEEE Biennial Congress of Argentina (ARGENCON). https://dx.doi.org/ 10.1109/ARGENCON49523.2020.9505386 DOI: https://doi.org/10.1109/ARGENCON49523.2020.9505386

Shiau, Y. R., Lo, F. Y., & Ko, P. C. (2021). Early intervention mechanism for preventing electrocution in construction engineering. Industrial health, 59(1), 4-17. http://dx.doi.org/10.2486/indhealth.2020-0097 DOI: https://doi.org/10.2486/indhealth.2020-0097

Sun, Z., Wang, G., Li, P., Wang, H., Zhang, M., & Liang, X. (2024). An improved random forest based on the classification accuracy and correlation measurement of decision trees. Expert Systems with Applications, 237, 121549. http://dx.doi.org/10.1016/j.eswa.2023.121549 DOI: https://doi.org/10.1016/j.eswa.2023.121549

Tarko, R., Kmak, J., Nowak, W., & Szpyra, W. (2022). Statistical Assessment of Electric Shock Hazard in MV Electrical Power Substations Supplied from Networks with Non-Effectively Earthed Neutral Point. Energies, 15(4), 1560. http://dx.doi.org/10.3390/en15041560 DOI: https://doi.org/10.3390/en15041560

Tong, H., Zeng, X., Yu, K., & Zhou, Z. (2025). A fault identification method for animal electric shocks considering unstable contact situations in low-voltage distribution grids. IEEE Transactions on Industrial Informatics. http://dx.doi.org/10.1109/TII.2025.3538132 DOI: https://doi.org/10.1109/TII.2025.3538132

Wei, J., Chammam, A., Feng, J., Alshammari, A., Tehranian, K., Innab, N., ... & Shutaywi, M. (2024). Power system monitoring for electrical disturbances in wide network using machine learning. Sustainable Computing: Informatics and Systems, 42, 100959. http://dx.doi.org/10.1016/j.suscom.2024.100959 DOI: https://doi.org/10.1016/j.suscom.2024.100959

Wu, Y., Tian, C., Zhang, Z., Chen, B., Liu, S., & Chen, Y. (2022). A novel current transformer based on virtual air gap and its basic measuring characteristics. IEEE Transactions on Power Delivery, 38(1), 13-25. http://dx.doi.org/10.1109/TPWRD.2022.3179321 DOI: https://doi.org/10.1109/TPWRD.2022.3179321

Yang, J., Liu, H., Hou, K., Kang, Z., Li, Q., & Li, Q. (2024). Influence of Ultra-High-Voltage hybrid reactive power compensation on interruption performance of circuit breakers under different faults. International Journal of Electrical Power & Energy Systems, 156, 109714. http://dx.doi.org/10.2139/ssrn.4089421 DOI: https://doi.org/10.1016/j.ijepes.2023.109714

Yogeshpriya, S., Saravanan, M., Selvaraj, P., Sindhu, R., Venkatesan, M., Ramkumar, P. K., & Premalatha, N. (2022). Rare survival of high-tension electrocution shock in a crossbred Jersey cattle: a complete profile on critical care monitoring. Iranian Journal of Veterinary. http://dx.doi.org/10.22099/IJVR.2022.43453.6356

Zhu, K., Zhang, N., Jiang, C., & Zhu, D. (2024). IMDAC: A robust intelligent software defect prediction model via multi‐objective optimization and end‐to‐end hybrid deep learning networks. Software: Practice and Experience, 54(2), 308-333. http://dx.doi.org/10.1002/spe.3274 DOI: https://doi.org/10.1002/spe.3274

Published

2025-09-02

How to Cite

Inca Balseca, E. G., & Morocho Caiza, A. F. (2025). Risks and prevention in field activities with transformers: statistical modeling of the probability of accidents and fatalities. ASCE, 4(3), 2107–2124. https://doi.org/10.70577/ASCE/2107.2124/2025

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.